If work done by the net force is zero, work done by the individual forces need:
(A) Zero
(B) Not be zero
(C) Can’t be determined
(D) Negative
Answer
Verified
437.1k+ views
Hint: Force being a vector quantity has both magnitude and direction. Therefore, two forces having equal magnitude by opposite direction adds up to net force zero. Since the net force applied is zero, work done is also zero although individual forces were non-zero.
Complete Step-By-Step Solution:
We know work is done when an object covers a certain distance on application of a certain force. Therefore, work done is zero, when either net force applied is zero, or when the applied force is not enough to cause a displacement.
Now, we know that force being a vector quantity has both direction and magnitude. Therefore, in our calculations, we need to take both these factors into consideration.
Let us consider the following example to get a better insight to the question.
Let us consider, we apply a force $F$ on the box from the right hand side and another force of the same magnitude $F$ is applied from the Left hand side. Therefore, since the forces are applied from the opposite direction, we can say that the net force is:
${F_{net}} = F + ( - F) = 0$
Thus, we can see from the example the net force is zero, even though individual forces were non-zero.
Therefore, the individual forces need not be zero.
Hence, option (B) is correct.
Note:
As work done mathematically is the dot product of force and displacement, there comes a quantity $\cos \theta $ in the expression of work done, where, $\theta $ is the angle between the applied force and displacement. Therefore, zero or no work is done when$\theta = {90^o}$, that is force and displacement being perpendicular to each other, and maximum work is done when or $\theta = {180^o}$
Complete Step-By-Step Solution:
We know work is done when an object covers a certain distance on application of a certain force. Therefore, work done is zero, when either net force applied is zero, or when the applied force is not enough to cause a displacement.
Now, we know that force being a vector quantity has both direction and magnitude. Therefore, in our calculations, we need to take both these factors into consideration.
Let us consider the following example to get a better insight to the question.
Let us consider, we apply a force $F$ on the box from the right hand side and another force of the same magnitude $F$ is applied from the Left hand side. Therefore, since the forces are applied from the opposite direction, we can say that the net force is:
${F_{net}} = F + ( - F) = 0$
Thus, we can see from the example the net force is zero, even though individual forces were non-zero.
Therefore, the individual forces need not be zero.
Hence, option (B) is correct.
Note:
As work done mathematically is the dot product of force and displacement, there comes a quantity $\cos \theta $ in the expression of work done, where, $\theta $ is the angle between the applied force and displacement. Therefore, zero or no work is done when$\theta = {90^o}$, that is force and displacement being perpendicular to each other, and maximum work is done when or $\theta = {180^o}$
Recently Updated Pages
Questions & Answers - Ask your doubts
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Science: Engaging Questions & Answers for Success
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
In case of conflict between fundamental rights of citizens class 7 social science CBSE
Can anyone list 10 advantages and disadvantages of friction
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE