Answer
Verified
468.6k+ views
Hint: This clear that this question belongs to determinants. We’ll try to make $ - \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ in the determinant by using some elementary properties of determinant, so that, in the end by expansion we can easily get its value.
Complete step-by-step answer:
Here we have given a condition in the form of determinant. Better to say, we have given an equation in the form of determinant because determinant is nothing but an arrangement of numbers or algebraic expressions.
We’ll use some elementary row and column operations to make the term in the determinant whose value we need to find. The steps are as follows:
Given,
$\left| {\begin{array}{*{20}{c}}
{1 + x}&1&1 \\
{1 + y}&{1 + 2y}&1 \\
{1 + z}&{1 + z}&{1 + 3z}
\end{array}} \right| = 0$
Step 1: ${C_2} \to {C_2} - {C_1}$ and ${C_3} \to {C_3} - {C_1}$
It means, we’ll replace the second column by its difference from 1 column and similarly, the third column is replaced by its difference from the first column.
\[
\left| {\begin{array}{*{20}{c}}
{1 + x}&1&1 \\
{1 + y}&{1 + 2y}&1 \\
{1 + z}&{1 + z}&{1 + 3z}
\end{array}} \right| = 0 \\
\sim \left| {\begin{array}{*{20}{c}}
{1 + x}&{ - x}&{ - x} \\
{1 + y}&y&{ - y} \\
{1 + z}&0&{2z}
\end{array}} \right| = 0 \\
\]
Step 2: Now, we’ll take common x from the first row, y from the second row, and z from the third row.
\[
\left| {\begin{array}{*{20}{c}}
{1 + x}&{ - x}&{ - x} \\
{1 + y}&y&{ - y} \\
{1 + z}&0&{2z}
\end{array}} \right| = 0 \\
\sim \left( {xyz} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{x} + 1}&{ - 1}&{ - 1} \\
{\dfrac{1}{y} + 1}&1&{ - 1} \\
{\dfrac{1}{z} + 1}&0&2
\end{array}} \right| = 0 \\
\]
Step 3: we wanted to make $ - \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ in the determinant. Now observe that by adding all the rows we’ll get it without negative sign. But it won’t be problematic for us. So, on adding all the rows that is on ${R_3} \to {R_3} + {R_2} + {R_1}$ we get,
\[
\left( {xyz} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{x} + 1}&{ - 1}&{ - 1} \\
{\dfrac{1}{y} + 1}&1&{ - 1} \\
{\dfrac{1}{z} + 1}&0&2
\end{array}} \right| = 0 \\
\sim \left( {xyz} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{x} + 1}&{ - 1}&{ - 1} \\
{\dfrac{1}{y} + 1}&1&{ - 1} \\
{\dfrac{1}{z} + \dfrac{1}{x} + \dfrac{1}{y} + 3}&0&0
\end{array}} \right| = 0 \\
\]
Now we can easily expand the determinant, which will give us,
$\left( {xyz} \right)\left( {3 + \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)\left( {1 + 1} \right) = 0$
Now, observe that, we need to find the value of $ - \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$. That means none of x, y and z can be 0. Hence, we’ll discard the case $\left( {xyz} \right) = 0$. Also 1+1 is 2 which is obviously not equal to 0. So, for this expression to be zero, $\left( {3 + \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ has to be equal to zero. On considering the same,
$
\left( {3 + \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = 0 \\
\Rightarrow - \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = 3 \\
$
Hence the required value of $ - \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ is equal to 3.
Note: If the given determinant is $\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{x_2}}&{{x_3}} \\
{{y_1}}&{{y_2}}&{{y_3}} \\
{{z_1}}&{{z_2}}&{{z_3}}
\end{array}} \right|$ then it’s expansion along first row will be
${x_1}\left( {{y_2}{z_3} - {z_2}{y_3}} \right) - {x_2}\left( {{y_1}{z_3} - {z_1}{y_3}} \right) + {x_3}\left( {{y_1}{z_2} - {z_1}{y_2}} \right)$. Also, observe that, if ${x_2} = 0$ and ${x_3} = 0$ then it’s easier to expand. Its value will become ${x_1}\left( {{y_2}{z_3} - {z_2}{y_3}} \right)$. This was the same case in our solution. That’s why it’s always recommended to make zeros in determinant or even in matrices.
Complete step-by-step answer:
Here we have given a condition in the form of determinant. Better to say, we have given an equation in the form of determinant because determinant is nothing but an arrangement of numbers or algebraic expressions.
We’ll use some elementary row and column operations to make the term in the determinant whose value we need to find. The steps are as follows:
Given,
$\left| {\begin{array}{*{20}{c}}
{1 + x}&1&1 \\
{1 + y}&{1 + 2y}&1 \\
{1 + z}&{1 + z}&{1 + 3z}
\end{array}} \right| = 0$
Step 1: ${C_2} \to {C_2} - {C_1}$ and ${C_3} \to {C_3} - {C_1}$
It means, we’ll replace the second column by its difference from 1 column and similarly, the third column is replaced by its difference from the first column.
\[
\left| {\begin{array}{*{20}{c}}
{1 + x}&1&1 \\
{1 + y}&{1 + 2y}&1 \\
{1 + z}&{1 + z}&{1 + 3z}
\end{array}} \right| = 0 \\
\sim \left| {\begin{array}{*{20}{c}}
{1 + x}&{ - x}&{ - x} \\
{1 + y}&y&{ - y} \\
{1 + z}&0&{2z}
\end{array}} \right| = 0 \\
\]
Step 2: Now, we’ll take common x from the first row, y from the second row, and z from the third row.
\[
\left| {\begin{array}{*{20}{c}}
{1 + x}&{ - x}&{ - x} \\
{1 + y}&y&{ - y} \\
{1 + z}&0&{2z}
\end{array}} \right| = 0 \\
\sim \left( {xyz} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{x} + 1}&{ - 1}&{ - 1} \\
{\dfrac{1}{y} + 1}&1&{ - 1} \\
{\dfrac{1}{z} + 1}&0&2
\end{array}} \right| = 0 \\
\]
Step 3: we wanted to make $ - \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ in the determinant. Now observe that by adding all the rows we’ll get it without negative sign. But it won’t be problematic for us. So, on adding all the rows that is on ${R_3} \to {R_3} + {R_2} + {R_1}$ we get,
\[
\left( {xyz} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{x} + 1}&{ - 1}&{ - 1} \\
{\dfrac{1}{y} + 1}&1&{ - 1} \\
{\dfrac{1}{z} + 1}&0&2
\end{array}} \right| = 0 \\
\sim \left( {xyz} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{x} + 1}&{ - 1}&{ - 1} \\
{\dfrac{1}{y} + 1}&1&{ - 1} \\
{\dfrac{1}{z} + \dfrac{1}{x} + \dfrac{1}{y} + 3}&0&0
\end{array}} \right| = 0 \\
\]
Now we can easily expand the determinant, which will give us,
$\left( {xyz} \right)\left( {3 + \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)\left( {1 + 1} \right) = 0$
Now, observe that, we need to find the value of $ - \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$. That means none of x, y and z can be 0. Hence, we’ll discard the case $\left( {xyz} \right) = 0$. Also 1+1 is 2 which is obviously not equal to 0. So, for this expression to be zero, $\left( {3 + \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ has to be equal to zero. On considering the same,
$
\left( {3 + \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = 0 \\
\Rightarrow - \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = 3 \\
$
Hence the required value of $ - \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ is equal to 3.
Note: If the given determinant is $\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{x_2}}&{{x_3}} \\
{{y_1}}&{{y_2}}&{{y_3}} \\
{{z_1}}&{{z_2}}&{{z_3}}
\end{array}} \right|$ then it’s expansion along first row will be
${x_1}\left( {{y_2}{z_3} - {z_2}{y_3}} \right) - {x_2}\left( {{y_1}{z_3} - {z_1}{y_3}} \right) + {x_3}\left( {{y_1}{z_2} - {z_1}{y_2}} \right)$. Also, observe that, if ${x_2} = 0$ and ${x_3} = 0$ then it’s easier to expand. Its value will become ${x_1}\left( {{y_2}{z_3} - {z_2}{y_3}} \right)$. This was the same case in our solution. That’s why it’s always recommended to make zeros in determinant or even in matrices.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE