Answer
Verified
441.6k+ views
Hint: In the given problem, \[\sum\limits_{i = 1}^n {x_i^2} = 400\] and \[\sum\limits_{i = 1}^n {x_1^{}} = 80\]
As already given, We have to calculate which of the given options is the possible value that \[n\] could have where ‘\[n\]’ is the number of observations.
In this problem, root mean square and the arithmetic mean are going to be used. The value of the root means the square of the given observations is always greater than or equal to the arithmetic mean.
This relation is going to be used in the solution.
Complete step-by-step answer:
In the given problem, the number of observations are given to be ‘\[n\]’.
Also, it is given that, \[\sum\limits_{i = 1}^n {x_i^2} = 400...........(1)\]
and \[\sum\limits_{i = 1}^n {x_1^{}} = 80...................(2)\]
Using equation (1), the root mean square value becomes \[\sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {x_i^2} } = \sqrt {\dfrac{{400}}{n}} \]
i.e., R.M.S \[ = \dfrac{{20}}{{\sqrt n }}....................(3)\]
Using equation (2), The arithmetic mean becomes
$\Rightarrow$ \[\dfrac{1}{n}\sum\limits_{i = 1}^n {x_1^{}} = \dfrac{{80}}{n}\]
i.e., A.M \[ = \dfrac{{80}}{n}.....................(4)\]
Now, according to the fact, the root mean square value of \[n\] numbers is greater than or equal to the arithmetic mean of the numbers.
i.e., \[R.M.S\; \geqslant A.M\]
i.e., using equations \[(3)\] and \[\left( 4 \right)\],
\[\dfrac{{20}}{{\sqrt n }} \geqslant \dfrac{{80}}{n}\]
On rearranging and solving the terms, we get:
$\Rightarrow$ \[\sqrt n \geqslant 4\]
On squaring both sides, we get:
$\Rightarrow$ \[n \geqslant 16\]
Hence, according to the given options, \[n = 18\] is the correct answer.
Note: In the given problem, root mean square value and the arithmetic mean are used. By using the relation between them, we found the possible value of \[n\] amongst the given options i.e., \[18\].
Because, option (A) i.e., \[9 < 16\]
Similarly, option (B) i.e., \[12 < 16\]
And, option (C) i.e., \[15 < 16\]
Only option (D) i.e., \[18 > 16\]
Hence, the possible value could be \[18\] among the given options.
So, the correct option is (D) i.e., \[18\].
As already given, We have to calculate which of the given options is the possible value that \[n\] could have where ‘\[n\]’ is the number of observations.
In this problem, root mean square and the arithmetic mean are going to be used. The value of the root means the square of the given observations is always greater than or equal to the arithmetic mean.
This relation is going to be used in the solution.
Complete step-by-step answer:
In the given problem, the number of observations are given to be ‘\[n\]’.
Also, it is given that, \[\sum\limits_{i = 1}^n {x_i^2} = 400...........(1)\]
and \[\sum\limits_{i = 1}^n {x_1^{}} = 80...................(2)\]
Using equation (1), the root mean square value becomes \[\sqrt {\dfrac{1}{n}\sum\limits_{i = 1}^n {x_i^2} } = \sqrt {\dfrac{{400}}{n}} \]
i.e., R.M.S \[ = \dfrac{{20}}{{\sqrt n }}....................(3)\]
Using equation (2), The arithmetic mean becomes
$\Rightarrow$ \[\dfrac{1}{n}\sum\limits_{i = 1}^n {x_1^{}} = \dfrac{{80}}{n}\]
i.e., A.M \[ = \dfrac{{80}}{n}.....................(4)\]
Now, according to the fact, the root mean square value of \[n\] numbers is greater than or equal to the arithmetic mean of the numbers.
i.e., \[R.M.S\; \geqslant A.M\]
i.e., using equations \[(3)\] and \[\left( 4 \right)\],
\[\dfrac{{20}}{{\sqrt n }} \geqslant \dfrac{{80}}{n}\]
On rearranging and solving the terms, we get:
$\Rightarrow$ \[\sqrt n \geqslant 4\]
On squaring both sides, we get:
$\Rightarrow$ \[n \geqslant 16\]
Hence, according to the given options, \[n = 18\] is the correct answer.
Note: In the given problem, root mean square value and the arithmetic mean are used. By using the relation between them, we found the possible value of \[n\] amongst the given options i.e., \[18\].
Because, option (A) i.e., \[9 < 16\]
Similarly, option (B) i.e., \[12 < 16\]
And, option (C) i.e., \[15 < 16\]
Only option (D) i.e., \[18 > 16\]
Hence, the possible value could be \[18\] among the given options.
So, the correct option is (D) i.e., \[18\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers