
If ${x^2} - 5x + 1 = 0$, then what is the value of ${x^5} + \dfrac{1}{{{x^5}}}$?
A) $3125$
B) $2625$
C) $3025$
D) $2525$
Answer
561.3k+ views
Hint: In this question, we are given a quadratic equation whose roots are not real. Hence, we cannot find the value of x and solve directly. We have been asked the value of ${x^5} + \dfrac{1}{{{x^5}}}$. At first, we will find the value of $x + \dfrac{1}{x}$ by shifting the given equation. Then we will square this equation. It will give us the value of ${x^2} + \dfrac{1}{{{x^2}}}$. Next, we will multiply both the equations to get the value of ${x^3} + \dfrac{1}{{{x^3}}}$. Then we will again square the equation of ${x^2} + \dfrac{1}{{{x^2}}}$. This will give us an equation in ${x^4} + \dfrac{1}{{{x^4}}}$. Multiply this equation with the equation in $x + \dfrac{1}{x}$. It will give us the equation in ${x^5} + \dfrac{1}{{{x^5}}}$ and ${x^3} + \dfrac{1}{{{x^3}}}$. Put the value of ${x^3} + \dfrac{1}{{{x^3}}}$ as already found above. This will give us the value of ${x^5} + \dfrac{1}{{{x^5}}}$
Complete step-by-step answer:
We are given ${x^2} - 5x + 1 = 0$. Let’s rearrange it.
$ \Rightarrow {x^2} + 1 = 5x$
Dividing both the sides by $x$,
$ \Rightarrow \dfrac{{{x^2}}}{x} + \dfrac{1}{x} = \dfrac{{5x}}{x}$
We will have,
$ \Rightarrow x + \dfrac{1}{x} = 5$ …. (1)
Squaring both the sides,
$ \Rightarrow {\left( {x + \dfrac{1}{x}} \right)^2} = {5^2} = 25$
Using the algebraic formula ${(a + b)^2} = {a^2} + 2ab + {b^2}$,
$ \Rightarrow {x^2} + \dfrac{1}{{{x^2}}} + 2 = 25$
$ \Rightarrow {x^2} + \dfrac{1}{{{x^2}}} = 25 - 2 = 23$ …. (2)
We will once again square both the sides,
$ \Rightarrow {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} = {(23)^2}$
Using the algebraic formula ${(a + b)^2} = {a^2} + 2ab + {b^2}$,
$ \Rightarrow {x^4} + \dfrac{1}{{{x^4}}} + 2 = 529$
$ \Rightarrow {x^4} + \dfrac{1}{{{x^4}}} + = 527$ …. (3)
Now, since we want ${x^5} + \dfrac{1}{{{x^5}}}$, we will multiply equation (1) with equation (3),
$ \Rightarrow \left( {{x^4} + \dfrac{1}{{{x^4}}}} \right)\left( {x + \dfrac{1}{x}} \right) = 527 \times 5$
On solving we get,
$ \Rightarrow {x^5} + {x^3} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} = 2635$
Grouping like terms,
$ \Rightarrow {x^5} + \dfrac{1}{{{x^5}}} + \left( {{x^3} + \dfrac{1}{{{x^3}}}} \right) = 2635$ …. (4)
Now we will find the value of ${x^3} + \dfrac{1}{{{x^3}}}$ by multiplying equation (1) and (2),
$ \Rightarrow \left( {x + \dfrac{1}{x}} \right)\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) = 5 \times 23$
On solving we get,
$ \Rightarrow {x^3} + \dfrac{1}{x} + x + \dfrac{1}{{{x^3}}} = 115$
Putting the value,
$ \Rightarrow x + \dfrac{1}{x} = 5$,
$ \Rightarrow {x^3} + \dfrac{1}{{{x^3}}} + 5 = 115$
$ \Rightarrow {x^3} + \dfrac{1}{{{x^3}}} = 110$
Putting this value in equation (4),
$ \Rightarrow {x^5} + \dfrac{1}{{{x^5}}} + 110 = 2635$
$ \Rightarrow {x^5} + \dfrac{1}{{{x^5}}} = 2635 - 110$
$ \Rightarrow {x^5} + \dfrac{1}{{{x^5}}} = 2525$
Hence, the value of ${x^5} + \dfrac{1}{{{x^5}}}$ is option (D) 2525.
Note: We can solve the problem in another way of method,
Given equation ${x^2} - 5x + 1 = 0$
Here equate the given to ${a^2} + bx + c = 0$
We get, $a = 1$, $b = - 5$, $c = 1$
Let a and b are the roots of the given equation,
By using property of relation between roots and coefficients,
$x + y = \dfrac{{ - b}}{a}$ and $x \cdot y = \dfrac{c}{a}$
Since, $x \cdot y = 1$
$ \Rightarrow y = \dfrac{1}{x}$
Hence, ${x^5} + {\left( {\dfrac{1}{x}} \right)^5}$ is same as ${x^5} + {y^5}$
Now, let us consider,
${x^2} - 5x + 1 = 0 - - - (1)$
${y^2} - 5y + 1 = 0 - - - (2)$
Multiply by ${x^{n - 2}}$ in equation (1),
${x^2}\left( {{x^{n - 2}}} \right) - 5x\left( {{x^{n - 2}}} \right) + 1\left( {{x^{n - 2}}} \right) = 0$
Multiplying the powers we get,
$ \Rightarrow \left( {{x^{n - 2 + 2}}} \right) - 5\left( {{x^{n - 2 + 1}}} \right) + 1\left( {{x^{n - 2}}} \right) = 0$
Hence,
$ \Rightarrow \left( {{x^n}} \right) - 5\left( {{x^{n - 1}}} \right) + \left( {{x^{n - 2}}} \right) = 0$
Multiply by ${y^{n - 2}}$ in equation (2) we get,
${y^2}\left( {{y^{n - 2}}} \right) - 5y\left( {{y^{n - 2}}} \right) + 1\left( {{y^{n - 2}}} \right) = 0$
Multiplying the powers we get,
$ \Rightarrow \left( {{y^{n - 2 + 2}}} \right) - 5\left( {{y^{n - 2 + 1}}} \right) + 1\left( {{y^{n - 2}}} \right) = 0$
Hence,
$ \Rightarrow \left( {{y^n}} \right) - 5\left( {{y^{n - 1}}} \right) + \left( {{y^{n - 2}}} \right) = 0$
Rearranging the terms on both equations,
$ \Rightarrow \left( {{x^n}} \right) = 5\left( {{x^{n - 1}}} \right) - \left( {{x^{n - 2}}} \right)$
$ \Rightarrow \left( {{y^n}} \right) = 5\left( {{y^{n - 1}}} \right) - \left( {{y^{n - 2}}} \right)$
Adding the both we get,
$ \Rightarrow \left( {{x^n}} \right) + \left( {{y^n}} \right) = = 5\left( {{x^{n - 1}}} \right) - \left( {{x^{n - 2}}} \right) + 5\left( {{y^{n - 1}}} \right) - \left( {{y^{n - 2}}} \right)$
Let consider the term $\left( {{x^n}} \right) + \left( {{y^n}} \right)$ as ${A_n}$,
Hence,
${A_n} = 5{A_{n - 1}} - {A_{n - 2}} - - - \left( * \right)$
Then, we can substituting the values for n as $n = 0,{\text{ }}1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5,{\text{ }}......$
Since by the property of relation between roots and coefficients,
${A_0} = 2$
${A_1} = 5$ Sum of the roots,
Hence,
${A_2} = 5{A_1} - {A_0} = 25 - 2 = 23$
${A_3} = 5{A_2} - {A_1} = 115 - 5 = 110$
${A_4} = 5{A_3} - {A_2} = 550 - 23 = 527$
${A_5} = 5{A_4} - {A_3} = 2635 - 110 = 2525$
Hence we get,
${A_5} = \left( {{x^5}} \right) + \left( {{y^5}} \right)$
$ \Rightarrow \left( {{x^5}} \right) + \left( {{{\left( {\dfrac{1}{x}} \right)}^5}} \right)$
$ \Rightarrow {x^5} + \dfrac{1}{{{x^5}}} = 2525$
Complete step-by-step answer:
We are given ${x^2} - 5x + 1 = 0$. Let’s rearrange it.
$ \Rightarrow {x^2} + 1 = 5x$
Dividing both the sides by $x$,
$ \Rightarrow \dfrac{{{x^2}}}{x} + \dfrac{1}{x} = \dfrac{{5x}}{x}$
We will have,
$ \Rightarrow x + \dfrac{1}{x} = 5$ …. (1)
Squaring both the sides,
$ \Rightarrow {\left( {x + \dfrac{1}{x}} \right)^2} = {5^2} = 25$
Using the algebraic formula ${(a + b)^2} = {a^2} + 2ab + {b^2}$,
$ \Rightarrow {x^2} + \dfrac{1}{{{x^2}}} + 2 = 25$
$ \Rightarrow {x^2} + \dfrac{1}{{{x^2}}} = 25 - 2 = 23$ …. (2)
We will once again square both the sides,
$ \Rightarrow {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} = {(23)^2}$
Using the algebraic formula ${(a + b)^2} = {a^2} + 2ab + {b^2}$,
$ \Rightarrow {x^4} + \dfrac{1}{{{x^4}}} + 2 = 529$
$ \Rightarrow {x^4} + \dfrac{1}{{{x^4}}} + = 527$ …. (3)
Now, since we want ${x^5} + \dfrac{1}{{{x^5}}}$, we will multiply equation (1) with equation (3),
$ \Rightarrow \left( {{x^4} + \dfrac{1}{{{x^4}}}} \right)\left( {x + \dfrac{1}{x}} \right) = 527 \times 5$
On solving we get,
$ \Rightarrow {x^5} + {x^3} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} = 2635$
Grouping like terms,
$ \Rightarrow {x^5} + \dfrac{1}{{{x^5}}} + \left( {{x^3} + \dfrac{1}{{{x^3}}}} \right) = 2635$ …. (4)
Now we will find the value of ${x^3} + \dfrac{1}{{{x^3}}}$ by multiplying equation (1) and (2),
$ \Rightarrow \left( {x + \dfrac{1}{x}} \right)\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) = 5 \times 23$
On solving we get,
$ \Rightarrow {x^3} + \dfrac{1}{x} + x + \dfrac{1}{{{x^3}}} = 115$
Putting the value,
$ \Rightarrow x + \dfrac{1}{x} = 5$,
$ \Rightarrow {x^3} + \dfrac{1}{{{x^3}}} + 5 = 115$
$ \Rightarrow {x^3} + \dfrac{1}{{{x^3}}} = 110$
Putting this value in equation (4),
$ \Rightarrow {x^5} + \dfrac{1}{{{x^5}}} + 110 = 2635$
$ \Rightarrow {x^5} + \dfrac{1}{{{x^5}}} = 2635 - 110$
$ \Rightarrow {x^5} + \dfrac{1}{{{x^5}}} = 2525$
Hence, the value of ${x^5} + \dfrac{1}{{{x^5}}}$ is option (D) 2525.
Note: We can solve the problem in another way of method,
Given equation ${x^2} - 5x + 1 = 0$
Here equate the given to ${a^2} + bx + c = 0$
We get, $a = 1$, $b = - 5$, $c = 1$
Let a and b are the roots of the given equation,
By using property of relation between roots and coefficients,
$x + y = \dfrac{{ - b}}{a}$ and $x \cdot y = \dfrac{c}{a}$
Since, $x \cdot y = 1$
$ \Rightarrow y = \dfrac{1}{x}$
Hence, ${x^5} + {\left( {\dfrac{1}{x}} \right)^5}$ is same as ${x^5} + {y^5}$
Now, let us consider,
${x^2} - 5x + 1 = 0 - - - (1)$
${y^2} - 5y + 1 = 0 - - - (2)$
Multiply by ${x^{n - 2}}$ in equation (1),
${x^2}\left( {{x^{n - 2}}} \right) - 5x\left( {{x^{n - 2}}} \right) + 1\left( {{x^{n - 2}}} \right) = 0$
Multiplying the powers we get,
$ \Rightarrow \left( {{x^{n - 2 + 2}}} \right) - 5\left( {{x^{n - 2 + 1}}} \right) + 1\left( {{x^{n - 2}}} \right) = 0$
Hence,
$ \Rightarrow \left( {{x^n}} \right) - 5\left( {{x^{n - 1}}} \right) + \left( {{x^{n - 2}}} \right) = 0$
Multiply by ${y^{n - 2}}$ in equation (2) we get,
${y^2}\left( {{y^{n - 2}}} \right) - 5y\left( {{y^{n - 2}}} \right) + 1\left( {{y^{n - 2}}} \right) = 0$
Multiplying the powers we get,
$ \Rightarrow \left( {{y^{n - 2 + 2}}} \right) - 5\left( {{y^{n - 2 + 1}}} \right) + 1\left( {{y^{n - 2}}} \right) = 0$
Hence,
$ \Rightarrow \left( {{y^n}} \right) - 5\left( {{y^{n - 1}}} \right) + \left( {{y^{n - 2}}} \right) = 0$
Rearranging the terms on both equations,
$ \Rightarrow \left( {{x^n}} \right) = 5\left( {{x^{n - 1}}} \right) - \left( {{x^{n - 2}}} \right)$
$ \Rightarrow \left( {{y^n}} \right) = 5\left( {{y^{n - 1}}} \right) - \left( {{y^{n - 2}}} \right)$
Adding the both we get,
$ \Rightarrow \left( {{x^n}} \right) + \left( {{y^n}} \right) = = 5\left( {{x^{n - 1}}} \right) - \left( {{x^{n - 2}}} \right) + 5\left( {{y^{n - 1}}} \right) - \left( {{y^{n - 2}}} \right)$
Let consider the term $\left( {{x^n}} \right) + \left( {{y^n}} \right)$ as ${A_n}$,
Hence,
${A_n} = 5{A_{n - 1}} - {A_{n - 2}} - - - \left( * \right)$
Then, we can substituting the values for n as $n = 0,{\text{ }}1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5,{\text{ }}......$
Since by the property of relation between roots and coefficients,
${A_0} = 2$
${A_1} = 5$ Sum of the roots,
Hence,
${A_2} = 5{A_1} - {A_0} = 25 - 2 = 23$
${A_3} = 5{A_2} - {A_1} = 115 - 5 = 110$
${A_4} = 5{A_3} - {A_2} = 550 - 23 = 527$
${A_5} = 5{A_4} - {A_3} = 2635 - 110 = 2525$
Hence we get,
${A_5} = \left( {{x^5}} \right) + \left( {{y^5}} \right)$
$ \Rightarrow \left( {{x^5}} \right) + \left( {{{\left( {\dfrac{1}{x}} \right)}^5}} \right)$
$ \Rightarrow {x^5} + \dfrac{1}{{{x^5}}} = 2525$
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

