If ${x^5} - 8 = 159$, what is the approximate value of $x$?
A. $2.67$
B. $2.71$
C. $2.78$
D. $2.81$
E. $2.84$
Answer
Verified
482.1k+ views
Hint: In this problem, first we will rewrite the given equation. Then, we will use differentials to approximate the required value of $x$. We know that the increment in variable $y$ corresponding to the increment in variable $x$ is given by $\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)$. Also we know that the differential of $x$ is defined as $dx = \Delta x$ and the differential of $y$ is defined as $dy = f'\left( x \right)dx$ or $dy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x$. We will use this information to approximate the value of $x$.
Complete step-by-step answer:
In this problem, the given equation is ${x^5} - 8 = 159$. Let us rewrite this equation. Therefore, we get $
{x^5} = 159 + 8 \\
\Rightarrow {x^5} = 167 \\
\Rightarrow x = {\left( {167} \right)^{\dfrac{1}{5}}}\; \cdots \cdots \left( 1 \right) \\
$
Now we need to find the fifth root of the number $167$. First we will think about the number whose fifth root is a positive integer. We know that ${\left( {243} \right)^{\dfrac{1}{5}}} = 3$. Therefore, we will rewrite the equation $\left( 1 \right)$ as ${\left( {167} \right)^{\dfrac{1}{5}}} = {\left( {243 - 76} \right)^{\dfrac{1}{5}}}$.
To approximate this value, let us consider $y = f\left( x \right) = {x^{\dfrac{1}{5}}}$ with $x = 243$ and $\Delta x = - 76$.
We know that the increment in variable $y$ corresponding to the increment in variable $x$ is given by $\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)$. Therefore, we can write
$
\Delta y = {\left( {x + \Delta x} \right)^{\dfrac{1}{5}}} - {x^{\dfrac{1}{5}}}\quad \left[ {\because f\left( x \right) = {x^{\dfrac{1}{5}}}} \right] \\
\Rightarrow \Delta y = {\left( {243 - 76} \right)^{\dfrac{1}{5}}} - {\left( {243} \right)^{\dfrac{1}{5}}}\quad \left[ {\because x = 243,\;\Delta x = - 76} \right] \\
\Rightarrow \Delta y = {\left( {167} \right)^{\dfrac{1}{5}}} - 3 \\
\Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \Delta y \cdots \cdots \left( 2 \right) \\
$
Also we know that the differential of $x$ is defined as $dx = \Delta x$ and the differential of $y$ is defined as $dy = f'\left( x \right)dx$ or $dy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x$. Therefore, we can write
$dy = \left( {\dfrac{1}{5}{x^{\dfrac{1}{5} - 1}}} \right)\left( { - 76} \right) \cdots \cdots \left( 3 \right)\quad \left[ {\because y = {x^{\dfrac{1}{5}}},\;\Delta x = - 76} \right]$
Note the here we find $\dfrac{{dy}}{{dx}}$ using the formula $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$. Let us simplify the equation $\left( 3 \right)$. Therefore, we get $dy = - \dfrac{{76{x^{\left( { - \dfrac{4}{5}} \right)}}}}{5}$
$
\Rightarrow dy = - \dfrac{{76{{\left( {243} \right)}^{ - \dfrac{4}{5}}}}}{5}\quad \left[ {\because x = 243} \right] \\
\Rightarrow dy = - \dfrac{{76{{\left( {{3^5}} \right)}^{ - \dfrac{4}{5}}}}}{5} \\
\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 5 \times \dfrac{4}{5}}}}}{5}\quad \left[ {\because {{\left( {{a^m}} \right)}^n} = {a^{m\; \times \;n}}} \right] \\
\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 4}}}}{5} \\
\Rightarrow dy = - \dfrac{{76}}{{5{{\left( 3 \right)}^4}}} \\
\Rightarrow dy = - \dfrac{{76}}{{5\left( {81} \right)}} \\
\Rightarrow dy = - 0.1877 \\
$
Note that here $dy$ is approximately equal to $\Delta y$. Therefore, $\Delta y = - 0.1877$.
Now we will put the value of $\Delta y$ in equation $\left( 2 \right)$, we get ${\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \left( { - 0.1877} \right)$
$ \Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 2.8123$. Therefore, if ${x^5} - 8 = 159$ then the approximate value of $x$ is $2.81$.
Therefore, option D is correct.
Note: In this type of problem if $dx = \Delta x$ is relatively small (when compared with $x$) then $dy$ will be a good approximation of $\Delta y$ and it is denoted by $dy \approx \Delta y$. Also note that the differential of the dependent variable (usually $y$) is not equal to the increment of the variable but the differential of the independent variable (usually $x$) is equal to the increment of variable. In this problem, $y$ is dependent variable and $x$ is independent variable.
Complete step-by-step answer:
In this problem, the given equation is ${x^5} - 8 = 159$. Let us rewrite this equation. Therefore, we get $
{x^5} = 159 + 8 \\
\Rightarrow {x^5} = 167 \\
\Rightarrow x = {\left( {167} \right)^{\dfrac{1}{5}}}\; \cdots \cdots \left( 1 \right) \\
$
Now we need to find the fifth root of the number $167$. First we will think about the number whose fifth root is a positive integer. We know that ${\left( {243} \right)^{\dfrac{1}{5}}} = 3$. Therefore, we will rewrite the equation $\left( 1 \right)$ as ${\left( {167} \right)^{\dfrac{1}{5}}} = {\left( {243 - 76} \right)^{\dfrac{1}{5}}}$.
To approximate this value, let us consider $y = f\left( x \right) = {x^{\dfrac{1}{5}}}$ with $x = 243$ and $\Delta x = - 76$.
We know that the increment in variable $y$ corresponding to the increment in variable $x$ is given by $\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)$. Therefore, we can write
$
\Delta y = {\left( {x + \Delta x} \right)^{\dfrac{1}{5}}} - {x^{\dfrac{1}{5}}}\quad \left[ {\because f\left( x \right) = {x^{\dfrac{1}{5}}}} \right] \\
\Rightarrow \Delta y = {\left( {243 - 76} \right)^{\dfrac{1}{5}}} - {\left( {243} \right)^{\dfrac{1}{5}}}\quad \left[ {\because x = 243,\;\Delta x = - 76} \right] \\
\Rightarrow \Delta y = {\left( {167} \right)^{\dfrac{1}{5}}} - 3 \\
\Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \Delta y \cdots \cdots \left( 2 \right) \\
$
Also we know that the differential of $x$ is defined as $dx = \Delta x$ and the differential of $y$ is defined as $dy = f'\left( x \right)dx$ or $dy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x$. Therefore, we can write
$dy = \left( {\dfrac{1}{5}{x^{\dfrac{1}{5} - 1}}} \right)\left( { - 76} \right) \cdots \cdots \left( 3 \right)\quad \left[ {\because y = {x^{\dfrac{1}{5}}},\;\Delta x = - 76} \right]$
Note the here we find $\dfrac{{dy}}{{dx}}$ using the formula $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$. Let us simplify the equation $\left( 3 \right)$. Therefore, we get $dy = - \dfrac{{76{x^{\left( { - \dfrac{4}{5}} \right)}}}}{5}$
$
\Rightarrow dy = - \dfrac{{76{{\left( {243} \right)}^{ - \dfrac{4}{5}}}}}{5}\quad \left[ {\because x = 243} \right] \\
\Rightarrow dy = - \dfrac{{76{{\left( {{3^5}} \right)}^{ - \dfrac{4}{5}}}}}{5} \\
\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 5 \times \dfrac{4}{5}}}}}{5}\quad \left[ {\because {{\left( {{a^m}} \right)}^n} = {a^{m\; \times \;n}}} \right] \\
\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 4}}}}{5} \\
\Rightarrow dy = - \dfrac{{76}}{{5{{\left( 3 \right)}^4}}} \\
\Rightarrow dy = - \dfrac{{76}}{{5\left( {81} \right)}} \\
\Rightarrow dy = - 0.1877 \\
$
Note that here $dy$ is approximately equal to $\Delta y$. Therefore, $\Delta y = - 0.1877$.
Now we will put the value of $\Delta y$ in equation $\left( 2 \right)$, we get ${\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \left( { - 0.1877} \right)$
$ \Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 2.8123$. Therefore, if ${x^5} - 8 = 159$ then the approximate value of $x$ is $2.81$.
Therefore, option D is correct.
Note: In this type of problem if $dx = \Delta x$ is relatively small (when compared with $x$) then $dy$ will be a good approximation of $\Delta y$ and it is denoted by $dy \approx \Delta y$. Also note that the differential of the dependent variable (usually $y$) is not equal to the increment of the variable but the differential of the independent variable (usually $x$) is equal to the increment of variable. In this problem, $y$ is dependent variable and $x$ is independent variable.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE