Answer
Verified
468.6k+ views
Hint: In this problem, first we will rewrite the given equation. Then, we will use differentials to approximate the required value of $x$. We know that the increment in variable $y$ corresponding to the increment in variable $x$ is given by $\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)$. Also we know that the differential of $x$ is defined as $dx = \Delta x$ and the differential of $y$ is defined as $dy = f'\left( x \right)dx$ or $dy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x$. We will use this information to approximate the value of $x$.
Complete step-by-step answer:
In this problem, the given equation is ${x^5} - 8 = 159$. Let us rewrite this equation. Therefore, we get $
{x^5} = 159 + 8 \\
\Rightarrow {x^5} = 167 \\
\Rightarrow x = {\left( {167} \right)^{\dfrac{1}{5}}}\; \cdots \cdots \left( 1 \right) \\
$
Now we need to find the fifth root of the number $167$. First we will think about the number whose fifth root is a positive integer. We know that ${\left( {243} \right)^{\dfrac{1}{5}}} = 3$. Therefore, we will rewrite the equation $\left( 1 \right)$ as ${\left( {167} \right)^{\dfrac{1}{5}}} = {\left( {243 - 76} \right)^{\dfrac{1}{5}}}$.
To approximate this value, let us consider $y = f\left( x \right) = {x^{\dfrac{1}{5}}}$ with $x = 243$ and $\Delta x = - 76$.
We know that the increment in variable $y$ corresponding to the increment in variable $x$ is given by $\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)$. Therefore, we can write
$
\Delta y = {\left( {x + \Delta x} \right)^{\dfrac{1}{5}}} - {x^{\dfrac{1}{5}}}\quad \left[ {\because f\left( x \right) = {x^{\dfrac{1}{5}}}} \right] \\
\Rightarrow \Delta y = {\left( {243 - 76} \right)^{\dfrac{1}{5}}} - {\left( {243} \right)^{\dfrac{1}{5}}}\quad \left[ {\because x = 243,\;\Delta x = - 76} \right] \\
\Rightarrow \Delta y = {\left( {167} \right)^{\dfrac{1}{5}}} - 3 \\
\Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \Delta y \cdots \cdots \left( 2 \right) \\
$
Also we know that the differential of $x$ is defined as $dx = \Delta x$ and the differential of $y$ is defined as $dy = f'\left( x \right)dx$ or $dy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x$. Therefore, we can write
$dy = \left( {\dfrac{1}{5}{x^{\dfrac{1}{5} - 1}}} \right)\left( { - 76} \right) \cdots \cdots \left( 3 \right)\quad \left[ {\because y = {x^{\dfrac{1}{5}}},\;\Delta x = - 76} \right]$
Note the here we find $\dfrac{{dy}}{{dx}}$ using the formula $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$. Let us simplify the equation $\left( 3 \right)$. Therefore, we get $dy = - \dfrac{{76{x^{\left( { - \dfrac{4}{5}} \right)}}}}{5}$
$
\Rightarrow dy = - \dfrac{{76{{\left( {243} \right)}^{ - \dfrac{4}{5}}}}}{5}\quad \left[ {\because x = 243} \right] \\
\Rightarrow dy = - \dfrac{{76{{\left( {{3^5}} \right)}^{ - \dfrac{4}{5}}}}}{5} \\
\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 5 \times \dfrac{4}{5}}}}}{5}\quad \left[ {\because {{\left( {{a^m}} \right)}^n} = {a^{m\; \times \;n}}} \right] \\
\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 4}}}}{5} \\
\Rightarrow dy = - \dfrac{{76}}{{5{{\left( 3 \right)}^4}}} \\
\Rightarrow dy = - \dfrac{{76}}{{5\left( {81} \right)}} \\
\Rightarrow dy = - 0.1877 \\
$
Note that here $dy$ is approximately equal to $\Delta y$. Therefore, $\Delta y = - 0.1877$.
Now we will put the value of $\Delta y$ in equation $\left( 2 \right)$, we get ${\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \left( { - 0.1877} \right)$
$ \Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 2.8123$. Therefore, if ${x^5} - 8 = 159$ then the approximate value of $x$ is $2.81$.
Therefore, option D is correct.
Note: In this type of problem if $dx = \Delta x$ is relatively small (when compared with $x$) then $dy$ will be a good approximation of $\Delta y$ and it is denoted by $dy \approx \Delta y$. Also note that the differential of the dependent variable (usually $y$) is not equal to the increment of the variable but the differential of the independent variable (usually $x$) is equal to the increment of variable. In this problem, $y$ is dependent variable and $x$ is independent variable.
Complete step-by-step answer:
In this problem, the given equation is ${x^5} - 8 = 159$. Let us rewrite this equation. Therefore, we get $
{x^5} = 159 + 8 \\
\Rightarrow {x^5} = 167 \\
\Rightarrow x = {\left( {167} \right)^{\dfrac{1}{5}}}\; \cdots \cdots \left( 1 \right) \\
$
Now we need to find the fifth root of the number $167$. First we will think about the number whose fifth root is a positive integer. We know that ${\left( {243} \right)^{\dfrac{1}{5}}} = 3$. Therefore, we will rewrite the equation $\left( 1 \right)$ as ${\left( {167} \right)^{\dfrac{1}{5}}} = {\left( {243 - 76} \right)^{\dfrac{1}{5}}}$.
To approximate this value, let us consider $y = f\left( x \right) = {x^{\dfrac{1}{5}}}$ with $x = 243$ and $\Delta x = - 76$.
We know that the increment in variable $y$ corresponding to the increment in variable $x$ is given by $\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)$. Therefore, we can write
$
\Delta y = {\left( {x + \Delta x} \right)^{\dfrac{1}{5}}} - {x^{\dfrac{1}{5}}}\quad \left[ {\because f\left( x \right) = {x^{\dfrac{1}{5}}}} \right] \\
\Rightarrow \Delta y = {\left( {243 - 76} \right)^{\dfrac{1}{5}}} - {\left( {243} \right)^{\dfrac{1}{5}}}\quad \left[ {\because x = 243,\;\Delta x = - 76} \right] \\
\Rightarrow \Delta y = {\left( {167} \right)^{\dfrac{1}{5}}} - 3 \\
\Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \Delta y \cdots \cdots \left( 2 \right) \\
$
Also we know that the differential of $x$ is defined as $dx = \Delta x$ and the differential of $y$ is defined as $dy = f'\left( x \right)dx$ or $dy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x$. Therefore, we can write
$dy = \left( {\dfrac{1}{5}{x^{\dfrac{1}{5} - 1}}} \right)\left( { - 76} \right) \cdots \cdots \left( 3 \right)\quad \left[ {\because y = {x^{\dfrac{1}{5}}},\;\Delta x = - 76} \right]$
Note the here we find $\dfrac{{dy}}{{dx}}$ using the formula $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$. Let us simplify the equation $\left( 3 \right)$. Therefore, we get $dy = - \dfrac{{76{x^{\left( { - \dfrac{4}{5}} \right)}}}}{5}$
$
\Rightarrow dy = - \dfrac{{76{{\left( {243} \right)}^{ - \dfrac{4}{5}}}}}{5}\quad \left[ {\because x = 243} \right] \\
\Rightarrow dy = - \dfrac{{76{{\left( {{3^5}} \right)}^{ - \dfrac{4}{5}}}}}{5} \\
\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 5 \times \dfrac{4}{5}}}}}{5}\quad \left[ {\because {{\left( {{a^m}} \right)}^n} = {a^{m\; \times \;n}}} \right] \\
\Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 4}}}}{5} \\
\Rightarrow dy = - \dfrac{{76}}{{5{{\left( 3 \right)}^4}}} \\
\Rightarrow dy = - \dfrac{{76}}{{5\left( {81} \right)}} \\
\Rightarrow dy = - 0.1877 \\
$
Note that here $dy$ is approximately equal to $\Delta y$. Therefore, $\Delta y = - 0.1877$.
Now we will put the value of $\Delta y$ in equation $\left( 2 \right)$, we get ${\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \left( { - 0.1877} \right)$
$ \Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 2.8123$. Therefore, if ${x^5} - 8 = 159$ then the approximate value of $x$ is $2.81$.
Therefore, option D is correct.
Note: In this type of problem if $dx = \Delta x$ is relatively small (when compared with $x$) then $dy$ will be a good approximation of $\Delta y$ and it is denoted by $dy \approx \Delta y$. Also note that the differential of the dependent variable (usually $y$) is not equal to the increment of the variable but the differential of the independent variable (usually $x$) is equal to the increment of variable. In this problem, $y$ is dependent variable and $x$ is independent variable.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers