Answer
Verified
429.3k+ views
Hint: In this problem, we are given an equation which is to be used to prove that the double derivative with respect to y will be equal to zero. We will be using some properties of logarithms and rules for differentiation. First we have to solve for a single derivative. Then find a double derivative.
Complete step by step answer:
Let’s solve the problem now.
Let’s have a look on some logarithm rules:
Product rule: ${{\log }_{b}}MN={{\log }_{b}}M+{{\log }_{b}}N$
Quotient rule: $\log \dfrac{M}{N}={{\log }_{b}}M-{{\log }_{b}}N$
Power rule: ${{\log }_{_{b}}}{{M}^{p}}=p{{\log }_{b}}M$
Now, we have to discuss some of the important rules of differentiation also. Suppose we have two functions say f and g are given. Then we will see how the rules can be applied on them.
Power rule: $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$
Sum rule: $\dfrac{d}{dx}\left( f\pm g \right)=f'\pm g'$
Product rule: $\dfrac{d}{dx}\left( fg \right)=fg'+f'g$
Quotient rule: $\dfrac{d}{dx}\left( \dfrac{f}{g} \right)=\dfrac{f'g-fg'}{{{g}^{2}}}$
Write the equation given:
$\Rightarrow {{x}^{m}}{{y}^{n}}={{\left( x+y \right)}^{m+n}}$
Take log on both the sides:
$\Rightarrow \log {{x}^{m}}{{y}^{n}}=\log {{\left( x+y \right)}^{m+n}}$
By using power rule and product rule for logarithms i.e.
Product rule: ${{\log }_{b}}MN={{\log }_{b}}M+{{\log }_{b}}N$
Power rule: ${{\log }_{_{b}}}{{M}^{p}}=p{{\log }_{b}}M$
Apply these two rules in above equation:
$\Rightarrow \log {{x}^{m}}+\log {{y}^{n}}=\left( m+n \right)\log \left( x+y \right)$
Differentiate both side with respect to ‘x’, we get:
$\Rightarrow m.\dfrac{1}{x}+n\dfrac{1}{y}\dfrac{dy}{dx}=\left( m+n \right).\dfrac{1}{\left( x+y \right)}\left( 1+\dfrac{dy}{dx} \right)$
Simplify terms:
$\Rightarrow \dfrac{m}{x}+\dfrac{n}{y}\dfrac{dy}{dx}=\dfrac{\left( m+n \right)}{\left( x+y \right)}\left( 1+\dfrac{dy}{dx} \right)$
Now, open the bracket and multiply the terms:
$\Rightarrow \dfrac{m}{x}+\dfrac{n}{y}\dfrac{dy}{dx}=\dfrac{m+n}{x+y}+\left( \dfrac{m+n}{x+y} \right)\dfrac{dy}{dx}$
Take $\dfrac{dy}{dx}$ containing terms on one side and rest on other side:
$\Rightarrow \dfrac{n}{y}\dfrac{dy}{dx}-\left( \dfrac{m+n}{x+y} \right)\dfrac{dy}{dx}=\dfrac{m+n}{x+y}-\dfrac{m}{x}$
Take $\dfrac{dy}{dx}$ common from left hand side:
$\Rightarrow \left( \dfrac{n}{y}-\dfrac{m+n}{x+y} \right)\dfrac{dy}{dx}=\dfrac{m+n}{x+y}-\dfrac{m}{x}$
Now, by cross multiplying and making the denominator common, solve the equation:
$\Rightarrow \left( \dfrac{n\left( x+y \right)-y\left( m+n \right)}{y\left( x+y \right)} \right)\dfrac{dy}{dx}=\dfrac{x\left( m+n \right)-m\left( x+y \right)}{x\left( x+y \right)}$
On simplifying the equation, we will get:
$\Rightarrow \left( \dfrac{nx+ny-my-ny}{y\left( x+y \right)} \right)\dfrac{dy}{dx}=\dfrac{xm+xn-mx-my}{x\left( x+y \right)}$
Cancel the like terms:
$\Rightarrow \left( \dfrac{nx-my}{y\left( x+y \right)} \right)\dfrac{dy}{dx}=\dfrac{xn-my}{x\left( x+y \right)}$
We can also write this equation as:
$\Rightarrow \dfrac{1}{\left( x+y \right)}.\left( \dfrac{nx-my}{y} \right)\dfrac{dy}{dx}=\dfrac{1}{\left( x+y \right)}.\dfrac{xn-my}{x}$
Cancel $\dfrac{1}{x+y}$ on both the sides, we get:
$\Rightarrow \left( \dfrac{nx-my}{y} \right)\dfrac{dy}{dx}=\dfrac{xn-my}{x}$
Expression nx - my will be cancelled from both the sides:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{y}{x}.....(i)$
So we obtained a single derivative for now. But we have to find a double derivative as well. So again differentiate with respect to x, we will get:
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{y}{x} \right)$
Apply quotient rule: $\dfrac{d}{dx}\left( \dfrac{f}{g} \right)=\dfrac{f'g-fg'}{{{g}^{2}}}$, we get:
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x.\dfrac{dy}{dx}-y.1}{{{x}^{2}}}\Leftrightarrow \dfrac{x.\dfrac{dy}{dx}-y}{{{x}^{2}}}$
If we write this expression more clearly, it will look like:
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{x}.\dfrac{dy}{dx}-\dfrac{y}{{{x}^{2}}}$
Use in equation(i) in above equation:
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{x}.\dfrac{y}{x}-\dfrac{y}{{{x}^{2}}}$
Multiply the terms:
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y}{{{x}^{2}}}-\dfrac{y}{{{x}^{2}}}$
On solving further, we get:
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=0$
Hence, it’s proved.
Note: Take care of the integers as well as algebraic terms while solving differentiation questions. Do remember that $\dfrac{d}{dx}\log x=\dfrac{1}{x}$. This derivative is used in between the answer which is left unnoticed. Perform each step carefully. Don’t miss the steps in order to complete the answer fast because there are many calculations.
Complete step by step answer:
Let’s solve the problem now.
Let’s have a look on some logarithm rules:
Product rule: ${{\log }_{b}}MN={{\log }_{b}}M+{{\log }_{b}}N$
Quotient rule: $\log \dfrac{M}{N}={{\log }_{b}}M-{{\log }_{b}}N$
Power rule: ${{\log }_{_{b}}}{{M}^{p}}=p{{\log }_{b}}M$
Now, we have to discuss some of the important rules of differentiation also. Suppose we have two functions say f and g are given. Then we will see how the rules can be applied on them.
Power rule: $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$
Sum rule: $\dfrac{d}{dx}\left( f\pm g \right)=f'\pm g'$
Product rule: $\dfrac{d}{dx}\left( fg \right)=fg'+f'g$
Quotient rule: $\dfrac{d}{dx}\left( \dfrac{f}{g} \right)=\dfrac{f'g-fg'}{{{g}^{2}}}$
Write the equation given:
$\Rightarrow {{x}^{m}}{{y}^{n}}={{\left( x+y \right)}^{m+n}}$
Take log on both the sides:
$\Rightarrow \log {{x}^{m}}{{y}^{n}}=\log {{\left( x+y \right)}^{m+n}}$
By using power rule and product rule for logarithms i.e.
Product rule: ${{\log }_{b}}MN={{\log }_{b}}M+{{\log }_{b}}N$
Power rule: ${{\log }_{_{b}}}{{M}^{p}}=p{{\log }_{b}}M$
Apply these two rules in above equation:
$\Rightarrow \log {{x}^{m}}+\log {{y}^{n}}=\left( m+n \right)\log \left( x+y \right)$
Differentiate both side with respect to ‘x’, we get:
$\Rightarrow m.\dfrac{1}{x}+n\dfrac{1}{y}\dfrac{dy}{dx}=\left( m+n \right).\dfrac{1}{\left( x+y \right)}\left( 1+\dfrac{dy}{dx} \right)$
Simplify terms:
$\Rightarrow \dfrac{m}{x}+\dfrac{n}{y}\dfrac{dy}{dx}=\dfrac{\left( m+n \right)}{\left( x+y \right)}\left( 1+\dfrac{dy}{dx} \right)$
Now, open the bracket and multiply the terms:
$\Rightarrow \dfrac{m}{x}+\dfrac{n}{y}\dfrac{dy}{dx}=\dfrac{m+n}{x+y}+\left( \dfrac{m+n}{x+y} \right)\dfrac{dy}{dx}$
Take $\dfrac{dy}{dx}$ containing terms on one side and rest on other side:
$\Rightarrow \dfrac{n}{y}\dfrac{dy}{dx}-\left( \dfrac{m+n}{x+y} \right)\dfrac{dy}{dx}=\dfrac{m+n}{x+y}-\dfrac{m}{x}$
Take $\dfrac{dy}{dx}$ common from left hand side:
$\Rightarrow \left( \dfrac{n}{y}-\dfrac{m+n}{x+y} \right)\dfrac{dy}{dx}=\dfrac{m+n}{x+y}-\dfrac{m}{x}$
Now, by cross multiplying and making the denominator common, solve the equation:
$\Rightarrow \left( \dfrac{n\left( x+y \right)-y\left( m+n \right)}{y\left( x+y \right)} \right)\dfrac{dy}{dx}=\dfrac{x\left( m+n \right)-m\left( x+y \right)}{x\left( x+y \right)}$
On simplifying the equation, we will get:
$\Rightarrow \left( \dfrac{nx+ny-my-ny}{y\left( x+y \right)} \right)\dfrac{dy}{dx}=\dfrac{xm+xn-mx-my}{x\left( x+y \right)}$
Cancel the like terms:
$\Rightarrow \left( \dfrac{nx-my}{y\left( x+y \right)} \right)\dfrac{dy}{dx}=\dfrac{xn-my}{x\left( x+y \right)}$
We can also write this equation as:
$\Rightarrow \dfrac{1}{\left( x+y \right)}.\left( \dfrac{nx-my}{y} \right)\dfrac{dy}{dx}=\dfrac{1}{\left( x+y \right)}.\dfrac{xn-my}{x}$
Cancel $\dfrac{1}{x+y}$ on both the sides, we get:
$\Rightarrow \left( \dfrac{nx-my}{y} \right)\dfrac{dy}{dx}=\dfrac{xn-my}{x}$
Expression nx - my will be cancelled from both the sides:
$\Rightarrow \dfrac{dy}{dx}=\dfrac{y}{x}.....(i)$
So we obtained a single derivative for now. But we have to find a double derivative as well. So again differentiate with respect to x, we will get:
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{y}{x} \right)$
Apply quotient rule: $\dfrac{d}{dx}\left( \dfrac{f}{g} \right)=\dfrac{f'g-fg'}{{{g}^{2}}}$, we get:
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x.\dfrac{dy}{dx}-y.1}{{{x}^{2}}}\Leftrightarrow \dfrac{x.\dfrac{dy}{dx}-y}{{{x}^{2}}}$
If we write this expression more clearly, it will look like:
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{x}.\dfrac{dy}{dx}-\dfrac{y}{{{x}^{2}}}$
Use in equation(i) in above equation:
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{x}.\dfrac{y}{x}-\dfrac{y}{{{x}^{2}}}$
Multiply the terms:
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y}{{{x}^{2}}}-\dfrac{y}{{{x}^{2}}}$
On solving further, we get:
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=0$
Hence, it’s proved.
Note: Take care of the integers as well as algebraic terms while solving differentiation questions. Do remember that $\dfrac{d}{dx}\log x=\dfrac{1}{x}$. This derivative is used in between the answer which is left unnoticed. Perform each step carefully. Don’t miss the steps in order to complete the answer fast because there are many calculations.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE