Answer
Verified
429.3k+ views
Hint:For solving this particular problem we must use the given statement that is $yz:zx:xy = 1:2:3$ then separate this ratio into two parts one is $yz:zx = 1:2$ to get the ratio of $y:x = 1:2$ and other is $zx:xy = 2:3$ to get the ratio of $z:y = 2:3$ . then after evaluating the result we get our desired result.
Complete solution step by step:
It is given that ,
$yz:zx:xy = 1:2:3$ (given)
Or
$yz:zx = 1:2$
Now consider the following equation as our first equation,
$y:x = 1:2.........(1)$
And
$zx:xy = 2:3$
Now consider the following equation as our second equation,
$z:y = 2:3................(2)$
Now multiply equation one by three and equate it with the second equation . we will get ,
$x:y:z = 6:3:2$
Now we have to find $\dfrac{x}{{yz}}:\dfrac{y}{{zx}}$ ,
$ \Rightarrow \dfrac{x}{{yz}}:\dfrac{y}{{zx}} = \dfrac{6}{1}:\dfrac{3}{2}$ ,
After simplification we will get ,
$
\Rightarrow \dfrac{x}{{yz}}:\dfrac{y}{{zx}} = \dfrac{2}{1}:\dfrac{1}{2} \\
\\
$
$ = 4:1$
Hence we get our required result that is $4:1$ .
Therefore, we can say that option D is the correct one.
Additional Information :A ratio is comparison of values of two quantities of the identical type and having the same unit by division.
Ratio of two quantities a and b is that the fraction ba and that we write it as a:b.
Example:,
If two girls and five boys were born on a specific day in an exceedingly hospital.
We can write the ratio of the number of ladies to boys as 2:5 or 52.
The ratio of the number of boys to girls is written as 5:2 or 25 .
Note: Ratio could be a fraction.
• Ratio does not have a unit.
• Units of both the quantities involved during a ratio must be the same.
Complete solution step by step:
It is given that ,
$yz:zx:xy = 1:2:3$ (given)
Or
$yz:zx = 1:2$
Now consider the following equation as our first equation,
$y:x = 1:2.........(1)$
And
$zx:xy = 2:3$
Now consider the following equation as our second equation,
$z:y = 2:3................(2)$
Now multiply equation one by three and equate it with the second equation . we will get ,
$x:y:z = 6:3:2$
Now we have to find $\dfrac{x}{{yz}}:\dfrac{y}{{zx}}$ ,
$ \Rightarrow \dfrac{x}{{yz}}:\dfrac{y}{{zx}} = \dfrac{6}{1}:\dfrac{3}{2}$ ,
After simplification we will get ,
$
\Rightarrow \dfrac{x}{{yz}}:\dfrac{y}{{zx}} = \dfrac{2}{1}:\dfrac{1}{2} \\
\\
$
$ = 4:1$
Hence we get our required result that is $4:1$ .
Therefore, we can say that option D is the correct one.
Additional Information :A ratio is comparison of values of two quantities of the identical type and having the same unit by division.
Ratio of two quantities a and b is that the fraction ba and that we write it as a:b.
Example:,
If two girls and five boys were born on a specific day in an exceedingly hospital.
We can write the ratio of the number of ladies to boys as 2:5 or 52.
The ratio of the number of boys to girls is written as 5:2 or 25 .
Note: Ratio could be a fraction.
• Ratio does not have a unit.
• Units of both the quantities involved during a ratio must be the same.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers