Answer
Verified
444.9k+ views
Hint: according to the question we have to find the value of $\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right)$when $z = x + iy$ is a complex number such that ${\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + ib$
So, first of all we have to taking cube both side of the given expression ${\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + ib$and put the conjugate of $z$ that is $\overline z = x - iy$
Formula used for the cube of $\left( {a + b} \right)$ that is mentioned below.
Formula used:
${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab(a + b).............................(A)$
Now, we have to compare both real and imaginary roots of $x - iy$and the expression obtained after taking the cube of $a + ib$to get the values of $\dfrac{x}{a}$and $\dfrac{y}{b}$
Now, we have to put the values of $\dfrac{x}{a}$and $\dfrac{y}{b}$in the given expression $\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right)$to get the desired value.
Complete answer:
Step 1: First of all we have to taking cube both side of the given expression ${\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + ib$
$ \Rightarrow \overline z = {(a + ib)^3}$
Now, use the formula of cube (A) that is mentioned in the solution hint.
$
\Rightarrow (x - iy) = {a^3} + {\left( {ib} \right)^3} + 3\left( a \right)\left( {ib} \right)\left( {a + ib} \right) \\
\Rightarrow (x - iy) = {a^3} + {i^3}{b^3} + 3{a^2}\left( {ib} \right) + 3a{\left( {ib} \right)^2} \\
$
As we know that ${i^2} = - 1$and ${i^3} = - i$
$
\Rightarrow (x - iy) = {a^3} - i{b^3} + 3{a^2}\left( {ib} \right) - 3a{b^2} \\
\Rightarrow (x - iy) = {a^3} - 3a{b^2} + i\left( {3{a^2}b - {b^3}} \right).......................(1) \\
$
Step 3: Now, we have to compare the both real and imaginary values of the expression (1) as obtained in the solution step 2.
$ \Rightarrow x = \left( {{a^3} - 3a{b^2}} \right)$and, $y = - \left( {\left( {3{a^2}b - {b^3}} \right)} \right)$
$ \Rightarrow \dfrac{x}{a} = \left( {{a^2} - 3{b^2}} \right)$and, $\dfrac{y}{b} = \left( {\left( { - 3{a^2} + {b^2}} \right)} \right)...............................(2)$
Step 4: Now, we have to the values of $\dfrac{x}{a}$and $\dfrac{y}{b}$from the expression (2) in the given expression$\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right)$
\[
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( {\left( {{a^2} - 3{b^2}} \right) + \left( { - 3{a^2} + {b^2}} \right)} \right) \\
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( {{a^2} - 3{a^2} + {b^2} - 3{b^2}} \right) \\
\]
Now, solving the expression as obtained just above,
\[
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( { - 2{b^2} - 2{a^2}} \right) \\
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left\{ { - 2\left( {{a^2} + {b^2}} \right)} \right\} \\
\]
On eliminating the terms which can be eliminated,
\[ \Rightarrow - 2\]
Hence, we have obtained the value of $\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right) = - 2$. Therefore option (B) is correct.
Note:
It is necessary that we have to find the cube of the expression given in the question then we can compare the real and imaginary roots with the conjugate of z which is $\overline z = x - iy$ and where z is $ = x + iy$.
It is necessary that we have to find the value of $\dfrac{x}{a}$and $\dfrac{y}{b}$with the help of comparing the expression of terms x and y.
So, first of all we have to taking cube both side of the given expression ${\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + ib$and put the conjugate of $z$ that is $\overline z = x - iy$
Formula used for the cube of $\left( {a + b} \right)$ that is mentioned below.
Formula used:
${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab(a + b).............................(A)$
Now, we have to compare both real and imaginary roots of $x - iy$and the expression obtained after taking the cube of $a + ib$to get the values of $\dfrac{x}{a}$and $\dfrac{y}{b}$
Now, we have to put the values of $\dfrac{x}{a}$and $\dfrac{y}{b}$in the given expression $\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right)$to get the desired value.
Complete answer:
Step 1: First of all we have to taking cube both side of the given expression ${\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + ib$
$ \Rightarrow \overline z = {(a + ib)^3}$
Now, use the formula of cube (A) that is mentioned in the solution hint.
$
\Rightarrow (x - iy) = {a^3} + {\left( {ib} \right)^3} + 3\left( a \right)\left( {ib} \right)\left( {a + ib} \right) \\
\Rightarrow (x - iy) = {a^3} + {i^3}{b^3} + 3{a^2}\left( {ib} \right) + 3a{\left( {ib} \right)^2} \\
$
As we know that ${i^2} = - 1$and ${i^3} = - i$
$
\Rightarrow (x - iy) = {a^3} - i{b^3} + 3{a^2}\left( {ib} \right) - 3a{b^2} \\
\Rightarrow (x - iy) = {a^3} - 3a{b^2} + i\left( {3{a^2}b - {b^3}} \right).......................(1) \\
$
Step 3: Now, we have to compare the both real and imaginary values of the expression (1) as obtained in the solution step 2.
$ \Rightarrow x = \left( {{a^3} - 3a{b^2}} \right)$and, $y = - \left( {\left( {3{a^2}b - {b^3}} \right)} \right)$
$ \Rightarrow \dfrac{x}{a} = \left( {{a^2} - 3{b^2}} \right)$and, $\dfrac{y}{b} = \left( {\left( { - 3{a^2} + {b^2}} \right)} \right)...............................(2)$
Step 4: Now, we have to the values of $\dfrac{x}{a}$and $\dfrac{y}{b}$from the expression (2) in the given expression$\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right)$
\[
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( {\left( {{a^2} - 3{b^2}} \right) + \left( { - 3{a^2} + {b^2}} \right)} \right) \\
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( {{a^2} - 3{a^2} + {b^2} - 3{b^2}} \right) \\
\]
Now, solving the expression as obtained just above,
\[
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( { - 2{b^2} - 2{a^2}} \right) \\
\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left\{ { - 2\left( {{a^2} + {b^2}} \right)} \right\} \\
\]
On eliminating the terms which can be eliminated,
\[ \Rightarrow - 2\]
Hence, we have obtained the value of $\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right) = - 2$. Therefore option (B) is correct.
Note:
It is necessary that we have to find the cube of the expression given in the question then we can compare the real and imaginary roots with the conjugate of z which is $\overline z = x - iy$ and where z is $ = x + iy$.
It is necessary that we have to find the value of $\dfrac{x}{a}$and $\dfrac{y}{b}$with the help of comparing the expression of terms x and y.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE