Answer
Verified
429k+ views
Hint:For solving this particular problem, we first take the given expression that is $|{z_1}| = |{z_2}| = |{z_3}| = 1$ , then we will square this expression . then we will use the relation we have as ${\left| {{z_1}} \right|^2} = {z_1}\overline {{z_1}} $ , multiplication of the complex number with the conjugate of the complex number we get magnitude which represents the distance of the complex number from the origin. Then we will get, \[{z_1}\overline {{z_1}} = {z_2}\overline {{z_2}} = {z_3}\overline {{z_3}} = 1\] , then substitute the result in the equation $\left| {\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}}} \right| = 1$ , and try to manipulate this equation to get the value of $\left| {{z_1} + {z_2} + {z_3}} \right|$ .
Complete solution step by step:
Now we know that,
$|{z_1}| = |{z_2}| = |{z_3}| = 1$ (given)
Now Squaring the given expression, we get the following ,
$|{z_1}{|^2} = |{z_2}{|^2} = |{z_3}{|^2} = {1^2}......(1)$
Now we know that ${\left| {{z_1}} \right|^2} = {z_1}\overline {{z_1}} $ , multiplication of the
complex number with the conjugate of the complex number we get magnitude which represents the distance of the complex number from the origin. we get, \[{z_1}\ overline {{z_1}} = {z_2}\overline
{{z_2}} = {z_3}\overline {{z_3}} = 1\] ,
Now,
$
\Rightarrow 1 = \left| {\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}}} \right| \\
= \left| {\dfrac{{{z_1}\overline {{z_1}} }}{{{z_1}}} + \dfrac{{{z_2}\overline {{z_2}} }}{{{z_2}}} +
\dfrac{{{z_3}\overline {{z_3}} }}{{{z_3}}}} \right| \\
= \left| {\overline {{z_1}} + \overline {{z_2}} + \overline {{z_3}} } \right| \\
= \overline {\left| {{z_1} + {z_2} + {z_3}} \right|} \\
= \left| {{z_1} + {z_2} + {z_3}} \right| \\
= 1 \\
$
Hence we can say that the value of $\left| {{z_1} + {z_2} + {z_3}} \right|$ is equal to one.
Therefore, option A is correct.
Formula Used:
For solving this particular solution ,we used the following relationship ,
${\left| {{z_1}} \right|^2} = {z_1}\overline {{z_1}} $ , here \[\overline {{z_1}} \] means the
conjugate of ${z_1}$ .
Note: As we know that $z = x + yi$ , which is the representation of the complex number. And $z = x - yi$ , is the conjugate of the complex number. Now multiplication of the complex number with the conjugate of the complex number we get magnitude which represents the distance of the complex number from the origin.
Complete solution step by step:
Now we know that,
$|{z_1}| = |{z_2}| = |{z_3}| = 1$ (given)
Now Squaring the given expression, we get the following ,
$|{z_1}{|^2} = |{z_2}{|^2} = |{z_3}{|^2} = {1^2}......(1)$
Now we know that ${\left| {{z_1}} \right|^2} = {z_1}\overline {{z_1}} $ , multiplication of the
complex number with the conjugate of the complex number we get magnitude which represents the distance of the complex number from the origin. we get, \[{z_1}\ overline {{z_1}} = {z_2}\overline
{{z_2}} = {z_3}\overline {{z_3}} = 1\] ,
Now,
$
\Rightarrow 1 = \left| {\dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}}} \right| \\
= \left| {\dfrac{{{z_1}\overline {{z_1}} }}{{{z_1}}} + \dfrac{{{z_2}\overline {{z_2}} }}{{{z_2}}} +
\dfrac{{{z_3}\overline {{z_3}} }}{{{z_3}}}} \right| \\
= \left| {\overline {{z_1}} + \overline {{z_2}} + \overline {{z_3}} } \right| \\
= \overline {\left| {{z_1} + {z_2} + {z_3}} \right|} \\
= \left| {{z_1} + {z_2} + {z_3}} \right| \\
= 1 \\
$
Hence we can say that the value of $\left| {{z_1} + {z_2} + {z_3}} \right|$ is equal to one.
Therefore, option A is correct.
Formula Used:
For solving this particular solution ,we used the following relationship ,
${\left| {{z_1}} \right|^2} = {z_1}\overline {{z_1}} $ , here \[\overline {{z_1}} \] means the
conjugate of ${z_1}$ .
Note: As we know that $z = x + yi$ , which is the representation of the complex number. And $z = x - yi$ , is the conjugate of the complex number. Now multiplication of the complex number with the conjugate of the complex number we get magnitude which represents the distance of the complex number from the origin.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE