Answer
Verified
502.5k+ views
Hint: Directly apply the differentiation to the given expression using the exponential differentiation, product and quotient rule of differentiation. Convert the first order derivative in terms of $'x'$ and $'y'$. Then proceed with finding the second order derivative and simplify it.
The given expression is \[{{e}^{x+y}}=xy\]
Differentiate the given expression with respect to $'x'$ , we get
\[\dfrac{d}{dx}\left( {{e}^{x+y}} \right)=\dfrac{d}{dx}\left( xy \right)\]
We know differentiation of exponential is, $\dfrac{d}{dx}\left( {{e}^{u}} \right)={{e}^{u}}.\dfrac{d}{dx}(u)$, so the above equation becomes,
\[\Rightarrow {{e}^{x+y}}\dfrac{d}{dx}\left( x+y \right)=\dfrac{d}{dx}\left( xy \right)\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
\[{{e}^{x+y}}\left( 1+\dfrac{dy}{dx} \right)=x\dfrac{dy}{dx}+y\dfrac{d(x)}{dx}\]
\[{{e}^{x+y}}\left( 1+\dfrac{dy}{dx} \right)=y+x\dfrac{dy}{dx}.\]
From given expression we have\[{{e}^{x+y}}=xy\], putting this value in above equation, we get
\[xy\left( 1+\dfrac{dy}{dx} \right)=y+x\dfrac{dy}{dx}\]
\[\Rightarrow xy+xy\dfrac{dy}{dx}=y+x\dfrac{dy}{dx}\]
Bringing the like terms on one side, we get
\[\Rightarrow xy\dfrac{dy}{dx}-x\dfrac{dy}{dx}=y-xy\]
Taking out the common terms, we get
\[\Rightarrow x\left( y-1 \right)\dfrac{dy}{dx}=y\left( 1-x \right)\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{y\left( 1-x \right)}{x\left( y-1 \right)}.........(i)\]
Now we need to find the second order derivative, so we will differentiate the above equation with respect to $'x'$, we get
\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right)\]
Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( x(y-1)\dfrac{dy}{dx}\left[ y\left( 1-x \right) \right] \right)-\left( y\left( 1-x \right)\dfrac{d}{dx}\left[ x(y-1) \right] \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Now applying the product rule of differentiation, i.e., \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x(y-1)\left( y\dfrac{d}{dx}\left( 1-x \right)+(1-x)\dfrac{dy}{dx} \right)-y\left( 1-x \right)\left( x\dfrac{d}{dx}\left( y-1 \right)+(y-1)\dfrac{d(x)}{dx} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
We know differentiation of constant term is zero, so solving the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x(y-1)\left( y(-1)+(1-x)\dfrac{dy}{dx} \right)-y\left( 1-x \right)\left( x\dfrac{dy}{dx}+(y-1)(1) \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Substituting the value \[\dfrac{dy}{dx}=\dfrac{y\left( 1-x \right)}{x\left( y-1 \right)}\] from equation (i) in the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\left( y-1 \right)\left( \left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right)\left( 1-x \right)-y \right)-y\left( 1-x \right)\left( \left( y-1 \right)+x\left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right) \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Solving the innermost brackets first, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\left( y-1 \right)\left( \dfrac{y{{\left( 1-x \right)}^{2}}-yx(y-1)}{x\left( y-1 \right)} \right)-y\left( 1-x \right)\left( \dfrac{{{(y-1)}^{2}}+y\left( 1-x \right)}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( y-1 \right)\left( \dfrac{y{{\left( 1-x \right)}^{2}}-yx(y-1)}{\left( y-1 \right)} \right)-y\left( 1-x \right)\left( \dfrac{{{(y-1)}^{2}}+y\left( 1-x \right)}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( \dfrac{y\left( y-1 \right){{\left( 1-x \right)}^{2}}-yx{{(y-1)}^{2}}-y(1-x){{(y-1)}^{2}}-{{y}^{2}}{{\left( 1-x \right)}^{2}}}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left( y-1 \right){{\left( 1-x \right)}^{2}}-yx{{(y-1)}^{2}}-y(1-x){{(y-1)}^{2}}-{{y}^{2}}{{\left( 1-x \right)}^{2}}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Now taking $'y'$ common, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left[ \left( y-1 \right){{\left( 1-x \right)}^{2}}-x{{(y-1)}^{2}}-(1-x){{(y-1)}^{2}}-y{{\left( 1-x \right)}^{2}} \right]}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Opening the two-two brackets, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left\{ y{{\left( 1-x \right)}^{2}}-{{\left( 1-x \right)}^{2}}-x{{(y-1)}^{2}}-{{\left( y-1 \right)}^{2}}+x{{\left( y-1 \right)}^{2}}-y{{\left( 1-x \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left\{ -{{\left( 1-x \right)}^{2}}-{{\left( y-1 \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-y\left\{ {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Hence proved
Note: Another way to solve this is first take log on both sides of the given expression, as shown below.
\[\ln \left( {{e}^{x+y}} \right)=\ln \left( xy \right)\]
\[\Rightarrow xy\ln \left( e \right)=\ln \left( xy \right)\]
\[\Rightarrow xy=\ln \left( xy \right)\]
Then perform the next steps.
The given expression is \[{{e}^{x+y}}=xy\]
Differentiate the given expression with respect to $'x'$ , we get
\[\dfrac{d}{dx}\left( {{e}^{x+y}} \right)=\dfrac{d}{dx}\left( xy \right)\]
We know differentiation of exponential is, $\dfrac{d}{dx}\left( {{e}^{u}} \right)={{e}^{u}}.\dfrac{d}{dx}(u)$, so the above equation becomes,
\[\Rightarrow {{e}^{x+y}}\dfrac{d}{dx}\left( x+y \right)=\dfrac{d}{dx}\left( xy \right)\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
\[{{e}^{x+y}}\left( 1+\dfrac{dy}{dx} \right)=x\dfrac{dy}{dx}+y\dfrac{d(x)}{dx}\]
\[{{e}^{x+y}}\left( 1+\dfrac{dy}{dx} \right)=y+x\dfrac{dy}{dx}.\]
From given expression we have\[{{e}^{x+y}}=xy\], putting this value in above equation, we get
\[xy\left( 1+\dfrac{dy}{dx} \right)=y+x\dfrac{dy}{dx}\]
\[\Rightarrow xy+xy\dfrac{dy}{dx}=y+x\dfrac{dy}{dx}\]
Bringing the like terms on one side, we get
\[\Rightarrow xy\dfrac{dy}{dx}-x\dfrac{dy}{dx}=y-xy\]
Taking out the common terms, we get
\[\Rightarrow x\left( y-1 \right)\dfrac{dy}{dx}=y\left( 1-x \right)\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{y\left( 1-x \right)}{x\left( y-1 \right)}.........(i)\]
Now we need to find the second order derivative, so we will differentiate the above equation with respect to $'x'$, we get
\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right)\]
Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( x(y-1)\dfrac{dy}{dx}\left[ y\left( 1-x \right) \right] \right)-\left( y\left( 1-x \right)\dfrac{d}{dx}\left[ x(y-1) \right] \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Now applying the product rule of differentiation, i.e., \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x(y-1)\left( y\dfrac{d}{dx}\left( 1-x \right)+(1-x)\dfrac{dy}{dx} \right)-y\left( 1-x \right)\left( x\dfrac{d}{dx}\left( y-1 \right)+(y-1)\dfrac{d(x)}{dx} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
We know differentiation of constant term is zero, so solving the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x(y-1)\left( y(-1)+(1-x)\dfrac{dy}{dx} \right)-y\left( 1-x \right)\left( x\dfrac{dy}{dx}+(y-1)(1) \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Substituting the value \[\dfrac{dy}{dx}=\dfrac{y\left( 1-x \right)}{x\left( y-1 \right)}\] from equation (i) in the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\left( y-1 \right)\left( \left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right)\left( 1-x \right)-y \right)-y\left( 1-x \right)\left( \left( y-1 \right)+x\left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right) \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Solving the innermost brackets first, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\left( y-1 \right)\left( \dfrac{y{{\left( 1-x \right)}^{2}}-yx(y-1)}{x\left( y-1 \right)} \right)-y\left( 1-x \right)\left( \dfrac{{{(y-1)}^{2}}+y\left( 1-x \right)}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( y-1 \right)\left( \dfrac{y{{\left( 1-x \right)}^{2}}-yx(y-1)}{\left( y-1 \right)} \right)-y\left( 1-x \right)\left( \dfrac{{{(y-1)}^{2}}+y\left( 1-x \right)}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( \dfrac{y\left( y-1 \right){{\left( 1-x \right)}^{2}}-yx{{(y-1)}^{2}}-y(1-x){{(y-1)}^{2}}-{{y}^{2}}{{\left( 1-x \right)}^{2}}}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left( y-1 \right){{\left( 1-x \right)}^{2}}-yx{{(y-1)}^{2}}-y(1-x){{(y-1)}^{2}}-{{y}^{2}}{{\left( 1-x \right)}^{2}}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Now taking $'y'$ common, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left[ \left( y-1 \right){{\left( 1-x \right)}^{2}}-x{{(y-1)}^{2}}-(1-x){{(y-1)}^{2}}-y{{\left( 1-x \right)}^{2}} \right]}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Opening the two-two brackets, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left\{ y{{\left( 1-x \right)}^{2}}-{{\left( 1-x \right)}^{2}}-x{{(y-1)}^{2}}-{{\left( y-1 \right)}^{2}}+x{{\left( y-1 \right)}^{2}}-y{{\left( 1-x \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left\{ -{{\left( 1-x \right)}^{2}}-{{\left( y-1 \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-y\left\{ {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Hence proved
Note: Another way to solve this is first take log on both sides of the given expression, as shown below.
\[\ln \left( {{e}^{x+y}} \right)=\ln \left( xy \right)\]
\[\Rightarrow xy\ln \left( e \right)=\ln \left( xy \right)\]
\[\Rightarrow xy=\ln \left( xy \right)\]
Then perform the next steps.
Recently Updated Pages
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
An aqueous solution containing liquid A M Wt 128 64 class null chemistry null
What is the mole ratio of benzene left PB0 150torr class null chemistry null
Which solution will show the maximum vapour pressure class null chemistry null
Mixture of volatile components A and B has total vapour class null chemistry null
256 g of sulphur in 100 g of CS2 has depression in class null chemistry null
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE