Answer
Verified
453k+ views
Hint: By the given equation and condition we find the roots of the given polynomial. After finding the roots of the polynomial we solve this and comparing with the given polynomial, we obtain the \[\alpha \],\[\beta \],\[\gamma \] values.
Complete step-by-step answer:
We know that the eccentricity of a parabola is \[1\].
Also, the eccentricity of a rectangular hyperbola can be determined and it’s shown below:
Rectangular hyperbola is a hyperbola for which the asymptotes are perpendicular, also called an equilateral hyperbola or right hyperbola. This occurs when the si-major and semi- major are equal.
So \[a = b\]
We know that the eccentricity of hyperbola
\[e = \dfrac{{{{({a^2} + {b^2})}^{\dfrac{1}{2}}}}}{a}\]
In rectangular hyperbola we have \[a = b\]
\[ \Rightarrow e = \dfrac{{{{(2{a^2})}^{\dfrac{1}{2}}}}}{a}\]
\[ \Rightarrow e = \dfrac{{\sqrt 2 a}}{a}\]
Hence, \[e = \sqrt 2 \]
Thus the root of polynomial \[f(x)\] is \[1\], \[\sqrt 2 \] and \[ - \sqrt 2 \]
Now \[f(x) = (x - 1)(x - \sqrt 2 )(x + \sqrt 2 )\]
Expanding the first and second brackets,
\[ \Rightarrow f(x) = ({x^2} - x\sqrt 2 - x + \sqrt 2 )(x + \sqrt 2 )\]
Again expanding barkers, we get a polynomial,
\[ \Rightarrow f(x) = {x^3} - {x^2}\sqrt 2 - {x^2} + \sqrt 2 x + {x^2}\sqrt 2 - 2x - \sqrt 2 x + 2\]
Cancelling terms and rearranging,
\[ \Rightarrow f(x) = {x^3} - {x^2} - 2x + 2\]
Comparing with the coefficients given polynomial,
\[f(x) = {x^3} + \alpha {x^2} + \beta x + \gamma \]
We get that \[\alpha = - 1\], \[\beta = - 2\] and \[\gamma = 2\]
Now we need the value of \[\alpha + \beta + \gamma \], and we know the individual values,
Substituting these we get,
\[ \Rightarrow \alpha + \beta + \gamma = - 1 - 2 + 1\]
\[ \Rightarrow \alpha + \beta + \gamma = - 1\]
So, the correct answer is “Option A”.
Note: In conic section, there is a locus of a point in which the distance to the point and the line are in the constant ratio. That ratio is known as eccentricity. It is denoted by\[e\]. We choose another root as \[ - \sqrt 2 \] because if one root is irrational it occurs in a conjugate pair.
Complete step-by-step answer:
We know that the eccentricity of a parabola is \[1\].
Also, the eccentricity of a rectangular hyperbola can be determined and it’s shown below:
Rectangular hyperbola is a hyperbola for which the asymptotes are perpendicular, also called an equilateral hyperbola or right hyperbola. This occurs when the si-major and semi- major are equal.
So \[a = b\]
We know that the eccentricity of hyperbola
\[e = \dfrac{{{{({a^2} + {b^2})}^{\dfrac{1}{2}}}}}{a}\]
In rectangular hyperbola we have \[a = b\]
\[ \Rightarrow e = \dfrac{{{{(2{a^2})}^{\dfrac{1}{2}}}}}{a}\]
\[ \Rightarrow e = \dfrac{{\sqrt 2 a}}{a}\]
Hence, \[e = \sqrt 2 \]
Thus the root of polynomial \[f(x)\] is \[1\], \[\sqrt 2 \] and \[ - \sqrt 2 \]
Now \[f(x) = (x - 1)(x - \sqrt 2 )(x + \sqrt 2 )\]
Expanding the first and second brackets,
\[ \Rightarrow f(x) = ({x^2} - x\sqrt 2 - x + \sqrt 2 )(x + \sqrt 2 )\]
Again expanding barkers, we get a polynomial,
\[ \Rightarrow f(x) = {x^3} - {x^2}\sqrt 2 - {x^2} + \sqrt 2 x + {x^2}\sqrt 2 - 2x - \sqrt 2 x + 2\]
Cancelling terms and rearranging,
\[ \Rightarrow f(x) = {x^3} - {x^2} - 2x + 2\]
Comparing with the coefficients given polynomial,
\[f(x) = {x^3} + \alpha {x^2} + \beta x + \gamma \]
We get that \[\alpha = - 1\], \[\beta = - 2\] and \[\gamma = 2\]
Now we need the value of \[\alpha + \beta + \gamma \], and we know the individual values,
Substituting these we get,
\[ \Rightarrow \alpha + \beta + \gamma = - 1 - 2 + 1\]
\[ \Rightarrow \alpha + \beta + \gamma = - 1\]
So, the correct answer is “Option A”.
Note: In conic section, there is a locus of a point in which the distance to the point and the line are in the constant ratio. That ratio is known as eccentricity. It is denoted by\[e\]. We choose another root as \[ - \sqrt 2 \] because if one root is irrational it occurs in a conjugate pair.
Recently Updated Pages
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
An aqueous solution containing liquid A M Wt 128 64 class null chemistry null
What is the mole ratio of benzene left PB0 150torr class null chemistry null
Which solution will show the maximum vapour pressure class null chemistry null
Mixture of volatile components A and B has total vapour class null chemistry null
256 g of sulphur in 100 g of CS2 has depression in class null chemistry null
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE