Answer
Verified
468.6k+ views
Hint: Write the value of the trigonometric functions. The trigonometric function is the function that relates the ratio of the length of two sides with the angles of the right-angled triangle widely used in navigation, oceanography, the theory of periodic functions, and projectiles.
Commonly used trigonometric functions are the sine, the cosine, and the tangent, whereas the cosecant, the secant, the cotangent are their reciprocal, respectively. The value of these functions can be determined by the relation of the sides of a right-angled triangle where sine function is the ratio of perpendicular (P) and hypotenuses (H) of the triangle \[\sin \theta {\text{ = }}\dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuses}}}}\]. Cosine is the ratio of the base (B) and hypotenuses (H) of the triangle \[\cos \theta {\text{ = }}\dfrac{{{\text{base}}}}{{{\text{hypotenuses}}}}\]; the tangent is the ratio of the perpendicular (P) and base (B) of the triangle \[\tan \theta {\text{ = }}\dfrac{{{\text{perpendicular}}}}{{{\text{base}}}}\] , whereas ${\text{cosec}}\theta $, \[\sec \theta \] and \[\cot \theta \] are their inverse respectively. The given value determines the value of these functions.
Complete step by step solution:
From the given relation\[\sqrt 3 \sin \theta = \cos \theta \] we can write it as
\[
\sqrt 3 \sin \theta = \cos \theta \\
\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\sqrt 3 }} \\
\tan \theta = \dfrac{1}{{\sqrt 3 }} \\
\][Since\[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]]
Hence the value \[\theta \] of will be equal to
\[
\tan \theta = \dfrac{1}{{\sqrt 3 }} \\
\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) \\
\theta = {30^ \circ } \\
\]
Now use the value \[\theta = {30^ \circ }\] to find the value of the given expression
\[
\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + {\text{cos}}\theta }} = \dfrac{{\sin {{30}^ \circ }\tan {{30}^ \circ }\left( {1 + \cos {{30}^ \circ }} \right)}}{{\sin {{30}^ \circ } + \cos {{30}^ \circ }}} \\
= \dfrac{{\left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( {1 + \left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right)}}{{\left( {\dfrac{1}{2}} \right) + \left( {\dfrac{{\sqrt 3 }}{2}} \right)}} \\
= \dfrac{{\left( {\dfrac{1}{{2\sqrt 3 }}} \right)\left( {\dfrac{{2 + \sqrt 3 }}{2}} \right)}}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
= \dfrac{{\left( {2 + \sqrt 3 } \right)}}{{4\sqrt 3 }} \times \dfrac{2}{{\left( {1 + \sqrt 3 } \right)}} \\
= \dfrac{{\left( {2 + \sqrt 3 } \right)}}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}} \\
\]
Hence the value of the given equation by using the values of trigonometric functions from the above given table will be equal to \[\dfrac{{\left( {2 + \sqrt 3 } \right)}}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}}\]
Note: Write the value of the function in the relation for the given respective angles in cases of \[{\text{cosec}}\theta \] \[\sec \theta \], \[\cot \theta \]either inverse them or write their values, respectively. Alternatively, the given trigonometric function can be reduced to a smaller expression by carrying out general algebraic and trigonometric identities and at last put the values of the trigonometric functions for the respective values of$\theta $.
Commonly used trigonometric functions are the sine, the cosine, and the tangent, whereas the cosecant, the secant, the cotangent are their reciprocal, respectively. The value of these functions can be determined by the relation of the sides of a right-angled triangle where sine function is the ratio of perpendicular (P) and hypotenuses (H) of the triangle \[\sin \theta {\text{ = }}\dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuses}}}}\]. Cosine is the ratio of the base (B) and hypotenuses (H) of the triangle \[\cos \theta {\text{ = }}\dfrac{{{\text{base}}}}{{{\text{hypotenuses}}}}\]; the tangent is the ratio of the perpendicular (P) and base (B) of the triangle \[\tan \theta {\text{ = }}\dfrac{{{\text{perpendicular}}}}{{{\text{base}}}}\] , whereas ${\text{cosec}}\theta $, \[\sec \theta \] and \[\cot \theta \] are their inverse respectively. The given value determines the value of these functions.
Complete step by step solution:
Function | $\sin \theta $ | $\cos \theta $ | $\tan \theta $ |
0 | 0 | 1 | 0 |
${30^0}$ | $\dfrac{1}{2}$ | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 3 }}$ |
${45^0}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{{\sqrt 2 }}$ | 1 |
${60^0}$ | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{2}$ | $\sqrt 3 $ |
${90^0}$ | 1 | 0 | Indeterminate |
From the given relation\[\sqrt 3 \sin \theta = \cos \theta \] we can write it as
\[
\sqrt 3 \sin \theta = \cos \theta \\
\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\sqrt 3 }} \\
\tan \theta = \dfrac{1}{{\sqrt 3 }} \\
\][Since\[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]]
Hence the value \[\theta \] of will be equal to
\[
\tan \theta = \dfrac{1}{{\sqrt 3 }} \\
\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) \\
\theta = {30^ \circ } \\
\]
Now use the value \[\theta = {30^ \circ }\] to find the value of the given expression
\[
\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + {\text{cos}}\theta }} = \dfrac{{\sin {{30}^ \circ }\tan {{30}^ \circ }\left( {1 + \cos {{30}^ \circ }} \right)}}{{\sin {{30}^ \circ } + \cos {{30}^ \circ }}} \\
= \dfrac{{\left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( {1 + \left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right)}}{{\left( {\dfrac{1}{2}} \right) + \left( {\dfrac{{\sqrt 3 }}{2}} \right)}} \\
= \dfrac{{\left( {\dfrac{1}{{2\sqrt 3 }}} \right)\left( {\dfrac{{2 + \sqrt 3 }}{2}} \right)}}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
= \dfrac{{\left( {2 + \sqrt 3 } \right)}}{{4\sqrt 3 }} \times \dfrac{2}{{\left( {1 + \sqrt 3 } \right)}} \\
= \dfrac{{\left( {2 + \sqrt 3 } \right)}}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}} \\
\]
Hence the value of the given equation by using the values of trigonometric functions from the above given table will be equal to \[\dfrac{{\left( {2 + \sqrt 3 } \right)}}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}}\]
Note: Write the value of the function in the relation for the given respective angles in cases of \[{\text{cosec}}\theta \] \[\sec \theta \], \[\cot \theta \]either inverse them or write their values, respectively. Alternatively, the given trigonometric function can be reduced to a smaller expression by carrying out general algebraic and trigonometric identities and at last put the values of the trigonometric functions for the respective values of$\theta $.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE