How do you implicitly differentiate $1-xy=x-y$?
Answer
Verified
442.8k+ views
Hint: To differentiate an implicit equation with respect to one of the variables, we differentiate both the sides of the equation with respect to that variable. Hence, differentiate both the sides with respect to x. You may also have to use the product rule of differentiation.
Complete step-by-step solution:
Let us first understand what is meant by implicit equations.
In simple terms, an implicit equation is an equation that has more than one variable and not in the form $y=f(x)$ where f is some function of x.
To differentiate an implicit equation with respect to one of the variables, we differentiate both the sides of the equation with respect to that variable.
Here, the given equation is $1-xy=x-y$ …. (i).
Let us assume that the independent variable of the equation is x and the variable y is the dependent variable and depends on x.
Therefore, let us differentiate equation (i) with respect to x.
Then,
$\Rightarrow \dfrac{d}{dx}\left( 1-xy \right)=\dfrac{d}{dx}\left( x-y \right)$
Using the associative property of differentiation we can write the above equation as
$\Rightarrow \dfrac{d}{dx}\left( 1 \right)-\dfrac{d}{dx}\left( xy \right)=\dfrac{d}{dx}\left( x \right)-\dfrac{d}{dx}\left( y \right)$ …. (ii)
Differentiation of a constant is always equal to zero.
Therefore, $\dfrac{d}{dx}\left( 1 \right)=0$
And $\dfrac{d}{dx}\left( x \right)$
The derivative $\dfrac{d}{dx}\left( xy \right)$ can be simplified using product rule.
According to the product rule of differentiation, $\dfrac{d}{dx}(xy)=\dfrac{d}{dx}(x).y+x.\dfrac{d}{dx}(y)$
This further implies that $\dfrac{d}{dx}(xy)=(1)y+x\dfrac{dy}{dx}$
Which means that $\dfrac{d}{dx}(xy)=y+x\dfrac{dy}{dx}$
Now, substitute all the given values in equation (ii).
$\Rightarrow 0-\left( y+x\dfrac{dy}{dx} \right)=1-\dfrac{dy}{dx}$
Then,
$\Rightarrow \dfrac{dy}{dx}-x\dfrac{dy}{dx}=1+y$
$\Rightarrow (1-x)\dfrac{dy}{dx}=1+y$
This means that $\dfrac{dy}{dx}=\dfrac{1+y}{1-x}$ …. (iii)
Hence, we calculated the derivative of y with respect to x by differentiating implicitly.
Note: When we have an equation in the form $y=f(x)$ where f is some function of x, this equation is called an explicit function. In this, we find the derivative by just differentiating the right hand side of the equation (i.e. f(x)). Sometimes, the question may demand to find the derivative in the term of x only. Then you can substitute the value of y in equation (iii) from the first equation given in the question.
Complete step-by-step solution:
Let us first understand what is meant by implicit equations.
In simple terms, an implicit equation is an equation that has more than one variable and not in the form $y=f(x)$ where f is some function of x.
To differentiate an implicit equation with respect to one of the variables, we differentiate both the sides of the equation with respect to that variable.
Here, the given equation is $1-xy=x-y$ …. (i).
Let us assume that the independent variable of the equation is x and the variable y is the dependent variable and depends on x.
Therefore, let us differentiate equation (i) with respect to x.
Then,
$\Rightarrow \dfrac{d}{dx}\left( 1-xy \right)=\dfrac{d}{dx}\left( x-y \right)$
Using the associative property of differentiation we can write the above equation as
$\Rightarrow \dfrac{d}{dx}\left( 1 \right)-\dfrac{d}{dx}\left( xy \right)=\dfrac{d}{dx}\left( x \right)-\dfrac{d}{dx}\left( y \right)$ …. (ii)
Differentiation of a constant is always equal to zero.
Therefore, $\dfrac{d}{dx}\left( 1 \right)=0$
And $\dfrac{d}{dx}\left( x \right)$
The derivative $\dfrac{d}{dx}\left( xy \right)$ can be simplified using product rule.
According to the product rule of differentiation, $\dfrac{d}{dx}(xy)=\dfrac{d}{dx}(x).y+x.\dfrac{d}{dx}(y)$
This further implies that $\dfrac{d}{dx}(xy)=(1)y+x\dfrac{dy}{dx}$
Which means that $\dfrac{d}{dx}(xy)=y+x\dfrac{dy}{dx}$
Now, substitute all the given values in equation (ii).
$\Rightarrow 0-\left( y+x\dfrac{dy}{dx} \right)=1-\dfrac{dy}{dx}$
Then,
$\Rightarrow \dfrac{dy}{dx}-x\dfrac{dy}{dx}=1+y$
$\Rightarrow (1-x)\dfrac{dy}{dx}=1+y$
This means that $\dfrac{dy}{dx}=\dfrac{1+y}{1-x}$ …. (iii)
Hence, we calculated the derivative of y with respect to x by differentiating implicitly.
Note: When we have an equation in the form $y=f(x)$ where f is some function of x, this equation is called an explicit function. In this, we find the derivative by just differentiating the right hand side of the equation (i.e. f(x)). Sometimes, the question may demand to find the derivative in the term of x only. Then you can substitute the value of y in equation (iii) from the first equation given in the question.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE