Answer
Verified
441k+ views
Hint: Average can be defined as the ratio of the sum of the observations in the given set of data to the total number of the observations. For example: The given data is \[11,{\text{ }}12,{\text{ }}13,{\text{ }}14\].
Average \[ = {\text{ }}\dfrac{{\left( {11 + 12 + 13 + 14} \right)}}{4}{\text{ }} = {\text{ }}12.5\]
In this particular problem, the average is associated with the percentages. So, we need to assume that the total number of students in the class is 100 just to make the calculation easier.
Complete step-by-step answer:
Let the total number of students in the class be \[100\].
Average marks of all the students in English is given to be \[52.25\]
According to the problem,
Number of the students in the C category = \[25\% \] of the total students \[ = {\text{ }}25\]
Average marks of the students in C category in English \[ = {\text{ }}31\]
Number of the students in the A category = \[20\% \] of the total students = \[20\]
Average marks of the students in A category in English = 80
Hence, the number of the remaining students \[ = {\text{ }}100{\text{ }}-{\text{ }}\left( {25{\text{ }} + {\text{ }}20} \right){\text{ }} = {\text{ }}100{\text{ }}-{\text{ }}45{\text{ }} = {\text{ }}55\]
Let Average marks of the remaining students in English = x
On solving,
\[ \Rightarrow \] \[52.25 \times 100{\text{ }} = {\text{ }}\left( {31 \times 25} \right){\text{ }} + {\text{ }}\left( {80 \times 20} \right){\text{ }} + {\text{ }}\left( {55 \times x} \right)\]
\[ \Rightarrow \] \[5225{\text{ }} = {\text{ }}775{\text{ }} + {\text{ }}160{\text{ }} + {\text{ }}55x\]
\[ \Rightarrow \] \[55x{\text{ }} = {\text{ }}5225{\text{ }}-{\text{ }}775{\text{ }}-{\text{ }}160\]
\[ \Rightarrow \] 55x = 2850
\[ \Rightarrow \] \[x{\text{ }} = {\text{ }}\dfrac{{2850}}{{55}}{\text{ }} = {\text{ }}51.8\]
Hence, the average marks of the remaining students in English is \[51.8\].
Note: The average is commonly known as the Mean or the Expected value.
To find the averages associated with the percentages, we always consider the total number of the observations to be 100 so that the calculations become easier.
So, on solving this problem by using the same method, 25% of the total students i.e. \[100\] becomes \[25\] in the C category and similarly, 20% of the total students i.e. \[100\] becomes \[20\] in A category and hence, we get the average marks of the remaining students in English, \[51.8\].
Average \[ = {\text{ }}\dfrac{{\left( {11 + 12 + 13 + 14} \right)}}{4}{\text{ }} = {\text{ }}12.5\]
In this particular problem, the average is associated with the percentages. So, we need to assume that the total number of students in the class is 100 just to make the calculation easier.
Complete step-by-step answer:
Let the total number of students in the class be \[100\].
Average marks of all the students in English is given to be \[52.25\]
According to the problem,
Number of the students in the C category = \[25\% \] of the total students \[ = {\text{ }}25\]
Average marks of the students in C category in English \[ = {\text{ }}31\]
Number of the students in the A category = \[20\% \] of the total students = \[20\]
Average marks of the students in A category in English = 80
Hence, the number of the remaining students \[ = {\text{ }}100{\text{ }}-{\text{ }}\left( {25{\text{ }} + {\text{ }}20} \right){\text{ }} = {\text{ }}100{\text{ }}-{\text{ }}45{\text{ }} = {\text{ }}55\]
Let Average marks of the remaining students in English = x
On solving,
\[ \Rightarrow \] \[52.25 \times 100{\text{ }} = {\text{ }}\left( {31 \times 25} \right){\text{ }} + {\text{ }}\left( {80 \times 20} \right){\text{ }} + {\text{ }}\left( {55 \times x} \right)\]
\[ \Rightarrow \] \[5225{\text{ }} = {\text{ }}775{\text{ }} + {\text{ }}160{\text{ }} + {\text{ }}55x\]
\[ \Rightarrow \] \[55x{\text{ }} = {\text{ }}5225{\text{ }}-{\text{ }}775{\text{ }}-{\text{ }}160\]
\[ \Rightarrow \] 55x = 2850
\[ \Rightarrow \] \[x{\text{ }} = {\text{ }}\dfrac{{2850}}{{55}}{\text{ }} = {\text{ }}51.8\]
Hence, the average marks of the remaining students in English is \[51.8\].
Note: The average is commonly known as the Mean or the Expected value.
To find the averages associated with the percentages, we always consider the total number of the observations to be 100 so that the calculations become easier.
So, on solving this problem by using the same method, 25% of the total students i.e. \[100\] becomes \[25\] in the C category and similarly, 20% of the total students i.e. \[100\] becomes \[20\] in A category and hence, we get the average marks of the remaining students in English, \[51.8\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
The quadratic equation whose one root is 2sqrt3 will class 10 maths JEE_Main
If alpha and beta are the roots of the equation x2 class 10 maths JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE