In a \[\Delta ABC,\text{ }{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]. Prove that the triangle is right-angled.
Answer
Verified
510k+ views
Hint: Assume a right-angled triangle ABC. Take the cos of each angle of \[\Delta ABC\] and square them separately. Add them to get \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]. Since we are already given this result, this means that our assumption is correct. Hence solve the question by this approach.
Complete step-by-step answer:
Here we are given that in \[\Delta ABC,\text{ }{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]. We have to prove that triangle ABC is a right-angled triangle.
Let us assume a \[\Delta ABC\] such that it is right-angled at B.
Let us take \[\angle A=\theta \], we know that in any triangle, the sum of 3 angles is \[{{180}^{o}}\]. So, we get,
\[\angle A+\angle B+\angle C={{180}^{o}}\]
By substituting the value of \[\angle A=\theta \] and \[\angle B={{90}^{o}}\], we get,
\[\theta +{{90}^{o}}+\angle C={{180}^{o}}\]
$\Rightarrow$ \[\angle C={{180}^{o}}-\theta -{{90}^{o}}\]
$\Rightarrow$ \[\angle C={{90}^{o}}-\theta \]
Now, we know that \[\angle A=\theta \]. By taking cos on both sides, of the above equation, we get,
\[\cos \left( A \right)=\cos \theta \]
By squaring both sides of the above equation, we get
$\Rightarrow$ \[{{\cos }^{2}}\left( A \right)={{\cos }^{2}}\theta ....\left( i \right)\]
Now, we also know that \[\angle B={{90}^{o}}\].
By taking cos on both sides of the above equation, we get
$\Rightarrow$ \[\cos B=\cos {{90}^{o}}\]
By squaring both sides of the above equation, we get,
$\Rightarrow$ \[{{\cos }^{2}}B={{\cos }^{2}}{{90}^{o}}\]
We know that \[\cos {{90}^{o}}=0\], so we get,
$\Rightarrow$ \[{{\cos }^{2}}B=0....\left( ii \right)\]
Now, we have found that \[\angle C=\left( {{90}^{o}}-\theta \right)\]
By taking cos on both sides of the above equation, we get,
$\Rightarrow$ \[\cos C=\cos \left( 90-\theta \right)\]
By squaring both sides of the above equation, we get,
$\Rightarrow$ \[{{\cos }^{2}}C={{\cos }^{2}}\left( 90-\theta \right)\]
We know that \[\cos \left( 90-\theta \right)=\sin \theta \]. So, we get,
$\Rightarrow$ \[{{\cos }^{2}}C={{\sin }^{2}}\theta ....\left( iii \right)\]
By adding equation (i), (ii) and (iii), we get,
$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C={{\cos }^{2}}\theta +0+{{\sin }^{2}}\theta \]
$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C={{\cos }^{2}}\theta +{{\sin }^{2}}\theta \]
We know that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]. So, we get,
$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]
This result is the same as what is given in the question and this is true only for our assumption. That means our assumption was correct. Therefore, we get \[\Delta ABC\] as a right-angled triangle.
Hence proved.
Note: In these types of questions, students are advised to go in the reverse direction. That means, they must assume the desired result and solve accordingly to prove the result already given in the question. If they can finally get the result already given in the question that means their assumption was correct.
Complete step-by-step answer:
Here we are given that in \[\Delta ABC,\text{ }{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]. We have to prove that triangle ABC is a right-angled triangle.
Let us assume a \[\Delta ABC\] such that it is right-angled at B.
Let us take \[\angle A=\theta \], we know that in any triangle, the sum of 3 angles is \[{{180}^{o}}\]. So, we get,
\[\angle A+\angle B+\angle C={{180}^{o}}\]
By substituting the value of \[\angle A=\theta \] and \[\angle B={{90}^{o}}\], we get,
\[\theta +{{90}^{o}}+\angle C={{180}^{o}}\]
$\Rightarrow$ \[\angle C={{180}^{o}}-\theta -{{90}^{o}}\]
$\Rightarrow$ \[\angle C={{90}^{o}}-\theta \]
Now, we know that \[\angle A=\theta \]. By taking cos on both sides, of the above equation, we get,
\[\cos \left( A \right)=\cos \theta \]
By squaring both sides of the above equation, we get
$\Rightarrow$ \[{{\cos }^{2}}\left( A \right)={{\cos }^{2}}\theta ....\left( i \right)\]
Now, we also know that \[\angle B={{90}^{o}}\].
By taking cos on both sides of the above equation, we get
$\Rightarrow$ \[\cos B=\cos {{90}^{o}}\]
By squaring both sides of the above equation, we get,
$\Rightarrow$ \[{{\cos }^{2}}B={{\cos }^{2}}{{90}^{o}}\]
We know that \[\cos {{90}^{o}}=0\], so we get,
$\Rightarrow$ \[{{\cos }^{2}}B=0....\left( ii \right)\]
Now, we have found that \[\angle C=\left( {{90}^{o}}-\theta \right)\]
By taking cos on both sides of the above equation, we get,
$\Rightarrow$ \[\cos C=\cos \left( 90-\theta \right)\]
By squaring both sides of the above equation, we get,
$\Rightarrow$ \[{{\cos }^{2}}C={{\cos }^{2}}\left( 90-\theta \right)\]
We know that \[\cos \left( 90-\theta \right)=\sin \theta \]. So, we get,
$\Rightarrow$ \[{{\cos }^{2}}C={{\sin }^{2}}\theta ....\left( iii \right)\]
By adding equation (i), (ii) and (iii), we get,
$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C={{\cos }^{2}}\theta +0+{{\sin }^{2}}\theta \]
$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C={{\cos }^{2}}\theta +{{\sin }^{2}}\theta \]
We know that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]. So, we get,
$\Rightarrow$ \[{{\cos }^{2}}A+{{\cos }^{2}}B+{{\cos }^{2}}C=1\]
This result is the same as what is given in the question and this is true only for our assumption. That means our assumption was correct. Therefore, we get \[\Delta ABC\] as a right-angled triangle.
Hence proved.
Note: In these types of questions, students are advised to go in the reverse direction. That means, they must assume the desired result and solve accordingly to prove the result already given in the question. If they can finally get the result already given in the question that means their assumption was correct.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE