Answer
Verified
476.7k+ views
Hint:In this question, we are given the probability of winning each horse. Also, we should note that as a tie is impossible, only one horse can win the race. Therefore, the winning of one horse is a mutually exclusive event of winning another horse. Therefore, the probability of winning one of the three horses should be equal to the sum of the probabilities of winning of the individual horses. Therefore, we can add the given probabilities of winning of each horse to obtain the required answer.
Complete step-by-step answer:
We are given that probability that horse 1 would win is $ \dfrac{1}{6} $ , horse 2 is $ \dfrac{1}{10} $ and horse 3 is $ \dfrac{1}{8} $ …………..(1.1)
Also, it is given that a tie is impossible. Therefore, two horses cannot win at the same time. However, we should note that in a race, one of the horses should win. This means that the events are mutually exclusive, i.e. if one horse wins, the other horses lose.
As we know that the probability of occurring of either of a set of mutually exclusive events is equal to the sum of their individual probabilities, from (1.1), we can write that
The probability that one horse wins= Sum of the individual probabilities of winning of the horses
$ =\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{8}=\dfrac{80+48+60}{480}=\dfrac{188}{480}=\dfrac{47\times 4}{120\times 4}=\dfrac{47}{120} $
Which matches option (c). Therefore, option (c) is the correct answer to this question.
Note:We should note that we could add the individual probabilities to get the answer considering that two horses cannot win at the same time. Otherwise we have to consider the probabilities of all events in which at least one of three horses wins i.e. all three horses win, horse 1 wins but horse 2 and 3 loose and so on to get the answer to this question.
Complete step-by-step answer:
We are given that probability that horse 1 would win is $ \dfrac{1}{6} $ , horse 2 is $ \dfrac{1}{10} $ and horse 3 is $ \dfrac{1}{8} $ …………..(1.1)
Also, it is given that a tie is impossible. Therefore, two horses cannot win at the same time. However, we should note that in a race, one of the horses should win. This means that the events are mutually exclusive, i.e. if one horse wins, the other horses lose.
As we know that the probability of occurring of either of a set of mutually exclusive events is equal to the sum of their individual probabilities, from (1.1), we can write that
The probability that one horse wins= Sum of the individual probabilities of winning of the horses
$ =\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{8}=\dfrac{80+48+60}{480}=\dfrac{188}{480}=\dfrac{47\times 4}{120\times 4}=\dfrac{47}{120} $
Which matches option (c). Therefore, option (c) is the correct answer to this question.
Note:We should note that we could add the individual probabilities to get the answer considering that two horses cannot win at the same time. Otherwise we have to consider the probabilities of all events in which at least one of three horses wins i.e. all three horses win, horse 1 wins but horse 2 and 3 loose and so on to get the answer to this question.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which of the following is the capital of the union class 9 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Name the metals of the coins Tanka Shashgani and Jital class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life