Answer
Verified
460.8k+ views
Hint: Here we have a grid filled with integers. We check if the sum of elements of every row is equal to sum of elements of every column and equal to sum of elements of every diagonal. If all the sums are equal to the same constant, we say it is a magic square.
* A magic square of order \[n\] is an arrangement of \[{n^2}\] distinct numbers such that sum of \[n\] numbers in every row, sum of \[n\] numbers in every column and sum of \[n\] numbers in every diagonal sum to the same constant.
Complete step by step solution:
To solve the magic square we allot names to all rows, all columns and both diagonals to make calculations easier.
Say, the first row is denoted by \[{R_1}\] , second row by \[{R_2}\] and third row by \[{R_3}\].
Similarly, first column is denoted by \[{C_1}\] , second column by \[{C_2}\] and third column by \[{C_3}\]
Diagonal from top left to bottom right be denoted by \[{D_1}\] and diagonal from top right to left bottom by \[{D_2}\]
Elements of \[{R_1}\] are \[1, - 10,0\]
Therefore, sum of elements of \[{R_1}\] is \[(1) + ( - 10) + (0) = 1 - 10 = - 9\]
Elements of \[{R_2}\] are \[ - 4, - 3, - 2\]
Therefore, sum of elements of \[{R_2}\] is \[( - 4) + ( - 3) + ( - 2) = - (4 + 3 + 2) = - 9\]
Elements of \[{R_3}\] are \[ - 6,4, - 7\]
Therefore, sum of elements of \[{R_3}\] is \[( - 6) + (4) + ( - 7) = 4 - (6 + 7) = 4 - 13 = - 9\]
Elements of \[{C_1}\] are \[1, - 4, - 6\]
Therefore, sum of elements of \[{C_1}\] is \[(1) + ( - 4) + ( - 6) = 1 - (6 + 4) = 1 - 10 = - 9\]
Elements of \[{C_2}\] are \[ - 10, - 3,4\]
Therefore, sum of elements of \[{C_2}\] is \[( - 10) + ( - 3) + (4) = 4 - (10 + 3) = 4 - 13 = - 9\]
Elements of \[{C_3}\] are \[0, - 2, - 7\]
Therefore, sum of elements of \[{C_3}\] is \[(0) + ( - 2) + ( - 7) = - (2 + 7) = - 9\]
Elements of \[{D_1}\] are \[1, - 3, - 7\]
Therefore, sum of elements of \[{D_1}\] is \[(1) + ( - 3) + ( - 7) = 1 - (3 + 7) = 1 - 10 = - 9\]
Elements of \[{D_2}\] are \[0, - 3, - 6\]
Therefore, sum of elements of \[{D_2}\] is \[(0) + ( - 3) + ( - 6) = - (3 + 6) = - 9\]
Clearly sum or elements of each row is \[ - 9\].
Sum of elements of each column is \[ - 9\] .
And the sum of elements of each diagonal is \[ - 9\] .
Since, numbers in each row, numbers in each column and numbers in each diagonal sum up to the same constant i.e. \[ - 9\]
Therefore this arrangement of numbers in the form of a grid is a magic square.
Note:
Students should be aware of the meaning of terms ‘Rows’ and ‘Columns’ as it can create confusion sometimes. A Row is the horizontal data arrangement and a column is the vertical data arrangement.
* Generally, a magic square has all elements as positive distinct numbers, then constant sum is called ‘Magic constant’ or ‘Magic sum’ and is denoted by \[M\] and is calculated by the formula \[M = \dfrac{{n({n^2} + 1)}}{2}\], where \[n\] is the order of the square.
* A magic square of order \[n\] is an arrangement of \[{n^2}\] distinct numbers such that sum of \[n\] numbers in every row, sum of \[n\] numbers in every column and sum of \[n\] numbers in every diagonal sum to the same constant.
Complete step by step solution:
To solve the magic square we allot names to all rows, all columns and both diagonals to make calculations easier.
Say, the first row is denoted by \[{R_1}\] , second row by \[{R_2}\] and third row by \[{R_3}\].
Similarly, first column is denoted by \[{C_1}\] , second column by \[{C_2}\] and third column by \[{C_3}\]
Diagonal from top left to bottom right be denoted by \[{D_1}\] and diagonal from top right to left bottom by \[{D_2}\]
Elements of \[{R_1}\] are \[1, - 10,0\]
Therefore, sum of elements of \[{R_1}\] is \[(1) + ( - 10) + (0) = 1 - 10 = - 9\]
Elements of \[{R_2}\] are \[ - 4, - 3, - 2\]
Therefore, sum of elements of \[{R_2}\] is \[( - 4) + ( - 3) + ( - 2) = - (4 + 3 + 2) = - 9\]
Elements of \[{R_3}\] are \[ - 6,4, - 7\]
Therefore, sum of elements of \[{R_3}\] is \[( - 6) + (4) + ( - 7) = 4 - (6 + 7) = 4 - 13 = - 9\]
Elements of \[{C_1}\] are \[1, - 4, - 6\]
Therefore, sum of elements of \[{C_1}\] is \[(1) + ( - 4) + ( - 6) = 1 - (6 + 4) = 1 - 10 = - 9\]
Elements of \[{C_2}\] are \[ - 10, - 3,4\]
Therefore, sum of elements of \[{C_2}\] is \[( - 10) + ( - 3) + (4) = 4 - (10 + 3) = 4 - 13 = - 9\]
Elements of \[{C_3}\] are \[0, - 2, - 7\]
Therefore, sum of elements of \[{C_3}\] is \[(0) + ( - 2) + ( - 7) = - (2 + 7) = - 9\]
Elements of \[{D_1}\] are \[1, - 3, - 7\]
Therefore, sum of elements of \[{D_1}\] is \[(1) + ( - 3) + ( - 7) = 1 - (3 + 7) = 1 - 10 = - 9\]
Elements of \[{D_2}\] are \[0, - 3, - 6\]
Therefore, sum of elements of \[{D_2}\] is \[(0) + ( - 3) + ( - 6) = - (3 + 6) = - 9\]
Clearly sum or elements of each row is \[ - 9\].
Sum of elements of each column is \[ - 9\] .
And the sum of elements of each diagonal is \[ - 9\] .
Since, numbers in each row, numbers in each column and numbers in each diagonal sum up to the same constant i.e. \[ - 9\]
Therefore this arrangement of numbers in the form of a grid is a magic square.
Note:
Students should be aware of the meaning of terms ‘Rows’ and ‘Columns’ as it can create confusion sometimes. A Row is the horizontal data arrangement and a column is the vertical data arrangement.
* Generally, a magic square has all elements as positive distinct numbers, then constant sum is called ‘Magic constant’ or ‘Magic sum’ and is denoted by \[M\] and is calculated by the formula \[M = \dfrac{{n({n^2} + 1)}}{2}\], where \[n\] is the order of the square.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE