Answer
Verified
463.8k+ views
Hint: The potential difference that tends to increase the electric current is known as electromotive force. By finding the electromotive force of the cells and their balancing lengths respectively we are able to find the solution for this question.
Formula used:
\[\dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{{l_1}}}{{l2}}\]
Where, \[{E_1},{E_2}\] is the emf of the secondary cells
${L_1},{L_2}$ is the balancing length of the potentiometer
Complete step by step answer:
Let us consider the values given in the above problem.
Given that in a potentiometer experiment of a cell of emf $1.25V$ gives a balancing length of $30cm$.
We know that if the cell is replaced by another cell, the balancing length is found to be 40 cm.
Let us consider ${E_1}$ be the cell of emf $1.25V$having balancing length ${l_1} = 30cm$ and ${E_2}$ be another cell having balancing length ${l_2} = 40cm$.
We can use the formula to compare emfs of two cells by individual cell method,
\[ \Rightarrow \dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{{l_1}}}{{l2}}\]
We shall now substitute the values for we get,
$ \Rightarrow {E_1} = 1.25V$
$ \Rightarrow {l_1} = 30cm{\text{ }}$
$ \Rightarrow {l_2} = 40cm$
$ \Rightarrow \dfrac{{1.25}}{{E2}} = \dfrac{{30}}{{40}}$
$ \Rightarrow E_2 = \dfrac{{1.25 \times 40}}{{30}}$
$ \Rightarrow E_2 = 1.6667V{\text{ }}$
$\therefore \simeq {\text{1}}.67{\text{ }}V$
Emf of the second cell $ \simeq 1.67V$. Hence, Option(B) is the required answer.
Additional information:
We know that the potentiometer is an instrument that is used to measure an unknown emf by comparison with known emf.
Potentiometer uses the null deflection method.
The fall of potential per unit length of potentiometer wire i.e. the potential gradient of wire is constant. This is the principle of the potentiometer.
The potentiometer is used to measure the emf of a cell, to compare EMFs of two cells, and to determine the internal resistance of a cell.
In the diagram:
$B_t$- batteries
${R_1},{R_2}$- Resistances
$G$- galvanometer.
Note:
When combination method or sum and difference method is used to compare the emfs of two cells the formula used is \[\dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{{L_1} + {L_2}}}{{{L_1} - {\text{ }}{L_2}}}\] where ${E_1}$ is the emf of cell having balancing ${L_1}$ and ${E_2}$ is the emf of cell having balancing ${L_2}$.
Formula used:
\[\dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{{l_1}}}{{l2}}\]
Where, \[{E_1},{E_2}\] is the emf of the secondary cells
${L_1},{L_2}$ is the balancing length of the potentiometer
Complete step by step answer:
Let us consider the values given in the above problem.
Given that in a potentiometer experiment of a cell of emf $1.25V$ gives a balancing length of $30cm$.
We know that if the cell is replaced by another cell, the balancing length is found to be 40 cm.
Let us consider ${E_1}$ be the cell of emf $1.25V$having balancing length ${l_1} = 30cm$ and ${E_2}$ be another cell having balancing length ${l_2} = 40cm$.
We can use the formula to compare emfs of two cells by individual cell method,
\[ \Rightarrow \dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{{l_1}}}{{l2}}\]
We shall now substitute the values for we get,
$ \Rightarrow {E_1} = 1.25V$
$ \Rightarrow {l_1} = 30cm{\text{ }}$
$ \Rightarrow {l_2} = 40cm$
$ \Rightarrow \dfrac{{1.25}}{{E2}} = \dfrac{{30}}{{40}}$
$ \Rightarrow E_2 = \dfrac{{1.25 \times 40}}{{30}}$
$ \Rightarrow E_2 = 1.6667V{\text{ }}$
$\therefore \simeq {\text{1}}.67{\text{ }}V$
Emf of the second cell $ \simeq 1.67V$. Hence, Option(B) is the required answer.
Additional information:
We know that the potentiometer is an instrument that is used to measure an unknown emf by comparison with known emf.
Potentiometer uses the null deflection method.
The fall of potential per unit length of potentiometer wire i.e. the potential gradient of wire is constant. This is the principle of the potentiometer.
The potentiometer is used to measure the emf of a cell, to compare EMFs of two cells, and to determine the internal resistance of a cell.
In the diagram:
$B_t$- batteries
${R_1},{R_2}$- Resistances
$G$- galvanometer.
Note:
When combination method or sum and difference method is used to compare the emfs of two cells the formula used is \[\dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{{L_1} + {L_2}}}{{{L_1} - {\text{ }}{L_2}}}\] where ${E_1}$ is the emf of cell having balancing ${L_1}$ and ${E_2}$ is the emf of cell having balancing ${L_2}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE