Answer
Verified
448.5k+ views
Hint:Here we have to find the ratio, try to think of a relation between emf and length.
We use the principle of potentiometer; the emf of the cell is directly proportional to the length at which it is balanced.
Also, by using the given data we will get the required answer.
Formulae used:
$E \propto l$
Here, E= emf of the cell and l= the length at which the emfs get balanced
Complete step by step solution:
According to the principle of potentiometer, the emf of the cell is directly proportional to the length at which it is balanced.
$E \propto l$
Now, let \[{E_1}\] be the emf of the first cell and \[{E_2}\] be the emf of the second cell.
We need to find $\dfrac{{{E_1}}}{{{E_2}}}$
For case one, the cells are connected in series with the negative of cell 1 connected to the positive of cell 2.
In this case, the resultant emf will be the sum of the given emfs.
$E = {E_1} + {E_2}$
$\therefore {E_1} + {E_2} \propto l$
Here, length is equal to 9 cm
$\therefore {E_1} + {E_2} \propto 9$ ------1
For case 2, the cells are connected in series with the negative of cell 1 connected to the negative of cell 2.
In this case, the resultant emf will be the difference of the given emfs.
$E = {E_1} - {E_2}$
Here, length is equal to 3 cm
$\therefore {E_1} - {E_2} \propto 3$ --------2
Now we divide equation 1 by 2
$\dfrac{{{E_1} + {E_2}}}{{{E_1} - {E_2}}} \propto \dfrac{9}{3}$
On dividing the terms we get,
$ \Rightarrow \dfrac{{{E_1} + {E_2}}}{{{E_1} - {E_2}}} \propto 3$
Now we have to do cross multiply, so that we have to removing the proportionality sign and multiply with the constant and we get
${E_1} + {E_2} = 3k\left( {{E_1} - {E_2}} \right)$
${E_1} + {E_2} = 3k{E_1} - 3k{E_2}$
Bringing similar terms to one side and adding we get,
$ - 2k{E_1} = - 4k{E_2}$
We can write it as in the form of ratio we get,
$\dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{4k}}{{2k}}$
Cancelling the term and we get
$\therefore \dfrac{{{E_1}}}{{{E_2}}} = \dfrac{2}{1}$
Thus, the correct answer is option B.
Additional information: The potentiometer can also be used to find the internal resistance of the cell and the potential difference across resistors. In 1841, the side wire potentiometer was invented by Johann Christian Poggendorff, a German physicist who is also the inventor of the electrostatic motor.
Note:For potentiometer questions there is only one relation, which is the working principle so only that formula is used in each question. Be it internal resistance of a cell or potential difference across resistors, there is only one formula.
We use the principle of potentiometer; the emf of the cell is directly proportional to the length at which it is balanced.
Also, by using the given data we will get the required answer.
Formulae used:
$E \propto l$
Here, E= emf of the cell and l= the length at which the emfs get balanced
Complete step by step solution:
According to the principle of potentiometer, the emf of the cell is directly proportional to the length at which it is balanced.
$E \propto l$
Now, let \[{E_1}\] be the emf of the first cell and \[{E_2}\] be the emf of the second cell.
We need to find $\dfrac{{{E_1}}}{{{E_2}}}$
For case one, the cells are connected in series with the negative of cell 1 connected to the positive of cell 2.
In this case, the resultant emf will be the sum of the given emfs.
$E = {E_1} + {E_2}$
$\therefore {E_1} + {E_2} \propto l$
Here, length is equal to 9 cm
$\therefore {E_1} + {E_2} \propto 9$ ------1
For case 2, the cells are connected in series with the negative of cell 1 connected to the negative of cell 2.
In this case, the resultant emf will be the difference of the given emfs.
$E = {E_1} - {E_2}$
Here, length is equal to 3 cm
$\therefore {E_1} - {E_2} \propto 3$ --------2
Now we divide equation 1 by 2
$\dfrac{{{E_1} + {E_2}}}{{{E_1} - {E_2}}} \propto \dfrac{9}{3}$
On dividing the terms we get,
$ \Rightarrow \dfrac{{{E_1} + {E_2}}}{{{E_1} - {E_2}}} \propto 3$
Now we have to do cross multiply, so that we have to removing the proportionality sign and multiply with the constant and we get
${E_1} + {E_2} = 3k\left( {{E_1} - {E_2}} \right)$
${E_1} + {E_2} = 3k{E_1} - 3k{E_2}$
Bringing similar terms to one side and adding we get,
$ - 2k{E_1} = - 4k{E_2}$
We can write it as in the form of ratio we get,
$\dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{4k}}{{2k}}$
Cancelling the term and we get
$\therefore \dfrac{{{E_1}}}{{{E_2}}} = \dfrac{2}{1}$
Thus, the correct answer is option B.
Additional information: The potentiometer can also be used to find the internal resistance of the cell and the potential difference across resistors. In 1841, the side wire potentiometer was invented by Johann Christian Poggendorff, a German physicist who is also the inventor of the electrostatic motor.
Note:For potentiometer questions there is only one relation, which is the working principle so only that formula is used in each question. Be it internal resistance of a cell or potential difference across resistors, there is only one formula.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths