Answer
Verified
465.6k+ views
Hint
Here, we will use the condition of resonance that is when the frequency of waves in the air column becomes equal to the natural frequency of tuning fork, a loud sound is produced in the air column.
Complete step-by-step answer:
Here the depth of first and second are given so we will use the resonance condition. When the frequency of waves in the air column becomes equal to the natural frequency of the tuning fork, a loud sound is produced in the air column. It is the condition for resonance. It occurs only when the length of the air column is proportional to one-fourth of the wavelength of sound waves having frequency equal to frequency of tuning fork.
In resonance column, first resonance occurs at
⇒ ${l_1} + x = \dfrac{\lambda }{4}$…………………. (1)
Where, l1 is the first resonance depth
Second resonance occurs at
⇒ ${l_2} + x = \dfrac{{3\lambda }}{4}$………………. (2)
Where, l2 is the second resonance depth.
From equation (1) and (2) we get
⇒ ${l_2} + x = 3\left( {{l_1} + x} \right)$
⇒ $x = \dfrac{{3{l_1} - {l_2}}}{2}$
As it is given that $\begin{gathered}
{l_1} = 22.7cm \\
{l_2} = 70.2cm \\
\end{gathered} $
⇒ $x = \dfrac{{3 \times 22.7 - 70.2}}{2} = 1.05cm$
Now, for third resonance depth
⇒ ${l_3} + x = \dfrac{{5\lambda }}{4}$……………. (3)
⇒ ${l_3} = \dfrac{{5\lambda }}{4} - x$
On putting the value of λ from equation (1) to equation (3), we get
⇒ ${l_3} = 5\left( {{l_1} + x} \right) - x = 5{l_1} + 4x$
On putting the values of x and l1 in above equation, we get
⇒ ${l_3} = 5 \times 22.7 + 4 \times 1.05 = 117.7cm$
Hence, option A is correct.
Note
Here the conditions of first, second and third resonance depth conditions, which are obtained due to the production of standing waves.
Here, we will use the condition of resonance that is when the frequency of waves in the air column becomes equal to the natural frequency of tuning fork, a loud sound is produced in the air column.
Complete step-by-step answer:
Here the depth of first and second are given so we will use the resonance condition. When the frequency of waves in the air column becomes equal to the natural frequency of the tuning fork, a loud sound is produced in the air column. It is the condition for resonance. It occurs only when the length of the air column is proportional to one-fourth of the wavelength of sound waves having frequency equal to frequency of tuning fork.
In resonance column, first resonance occurs at
⇒ ${l_1} + x = \dfrac{\lambda }{4}$…………………. (1)
Where, l1 is the first resonance depth
Second resonance occurs at
⇒ ${l_2} + x = \dfrac{{3\lambda }}{4}$………………. (2)
Where, l2 is the second resonance depth.
From equation (1) and (2) we get
⇒ ${l_2} + x = 3\left( {{l_1} + x} \right)$
⇒ $x = \dfrac{{3{l_1} - {l_2}}}{2}$
As it is given that $\begin{gathered}
{l_1} = 22.7cm \\
{l_2} = 70.2cm \\
\end{gathered} $
⇒ $x = \dfrac{{3 \times 22.7 - 70.2}}{2} = 1.05cm$
Now, for third resonance depth
⇒ ${l_3} + x = \dfrac{{5\lambda }}{4}$……………. (3)
⇒ ${l_3} = \dfrac{{5\lambda }}{4} - x$
On putting the value of λ from equation (1) to equation (3), we get
⇒ ${l_3} = 5\left( {{l_1} + x} \right) - x = 5{l_1} + 4x$
On putting the values of x and l1 in above equation, we get
⇒ ${l_3} = 5 \times 22.7 + 4 \times 1.05 = 117.7cm$
Hence, option A is correct.
Note
Here the conditions of first, second and third resonance depth conditions, which are obtained due to the production of standing waves.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE