Answer
Verified
99.9k+ views
Hint We know that for a resonance tube experiment, the difference between successive resonance is equal to half the wavelength. Hence, we will use this concept to calculate the third resonance.
i.e. \[{\lambda _n} - {\lambda _{n - 1}} = \dfrac{\lambda }{2}......(1)\]
where,
${\lambda _n}$ is length of nth resonance.
$\lambda $ is wavelength.
Complete Step by step solution
Given: length of 1st resonance = ${\lambda _1} = 10.5cm$
Length of 2nd resonance = ${\lambda _2} = 29.5cm$
Now difference between first and second resonance is,
$\begin{array}{*{20}{c}}
{{\lambda _2} - {\lambda _1}}& = &{\dfrac{\lambda }{2}} \\
{29.5 - 10.5}& = &{\dfrac{\lambda }{2}} \\
\lambda & = &{38cm}
\end{array}$
Now we have to calculate third resonance, hence using equation (1) we get
$
{\lambda _3} - {\lambda _2} = \dfrac{\lambda }{2} \\
{\lambda _3} = {\lambda _2} + \dfrac{\lambda }{2} \\
{\lambda _3} = 29.5cm + 19cm \\
{\lambda _3} = 48.5cm \\
$
Hence the length of third resonance is $48.5cm$.
Hence option C is correct.
Note In resonance tube experiment, resonance is obtained when the first object is vibrating at the natural frequency of the second object. When this occurs, the fork forces the resonance tube to vibrate at its own frequency and the resonance is achieved
i.e. \[{\lambda _n} - {\lambda _{n - 1}} = \dfrac{\lambda }{2}......(1)\]
where,
${\lambda _n}$ is length of nth resonance.
$\lambda $ is wavelength.
Complete Step by step solution
Given: length of 1st resonance = ${\lambda _1} = 10.5cm$
Length of 2nd resonance = ${\lambda _2} = 29.5cm$
Now difference between first and second resonance is,
$\begin{array}{*{20}{c}}
{{\lambda _2} - {\lambda _1}}& = &{\dfrac{\lambda }{2}} \\
{29.5 - 10.5}& = &{\dfrac{\lambda }{2}} \\
\lambda & = &{38cm}
\end{array}$
Now we have to calculate third resonance, hence using equation (1) we get
$
{\lambda _3} - {\lambda _2} = \dfrac{\lambda }{2} \\
{\lambda _3} = {\lambda _2} + \dfrac{\lambda }{2} \\
{\lambda _3} = 29.5cm + 19cm \\
{\lambda _3} = 48.5cm \\
$
Hence the length of third resonance is $48.5cm$.
Hence option C is correct.
Note In resonance tube experiment, resonance is obtained when the first object is vibrating at the natural frequency of the second object. When this occurs, the fork forces the resonance tube to vibrate at its own frequency and the resonance is achieved
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Find the moment of inertia through the face diagonal class 11 physics JEE_Main
A block A slides over another block B which is placed class 11 physics JEE_Main
The shape of XeF5 + ion is A Pentagonal B Octahedral class 11 chemistry JEE_Main