Answer
Verified
496.8k+ views
Hint: Here, we will verify $2\sin A\cos A = 1$by finding the values of $\sin A$ and $\cos A$ with the given $\tan A$ value.
Complete step-by-step answer:
Given,
In a right angle triangle ABC, right-angled at B i.e..,$\angle ABC = {90^0}$
And it is also given that $\tan A = 1$i.e.., $\dfrac{{BC}}{{AB}} = 1[\because \tan \theta = \dfrac{{opp}}{{Adj}}]$.
Therefore, $BC = AB$
Let, $AB = BC = k$ where ‘k’ is a positive number.
As we know that $A{C^2} = A{B^2} + B{C^2}[\because $Pythagoras Theorem]
Now let us substitute the value of AB, BC as ‘k’, we get
$
\Rightarrow A{C^2} = {k^2} + {k^2} \\
\Rightarrow A{C^2} = 2{k^2} \\
\Rightarrow AC = \sqrt 2 k \\
$
Now, let us find the value of $\sin A$ and $\cos A$.
$ \Rightarrow \sin A = \dfrac{{opp}}{{hyp}} = \dfrac{{BC}}{{AC}} = \dfrac{k}{{\sqrt 2 k}} = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow \cos A = \dfrac{{adj}}{{hyp}} = \dfrac{{AB}}{{AC}} = \dfrac{k}{{\sqrt 2 k}} = \dfrac{1}{{\sqrt 2 }}$
Now, we need to verify $2\sin A\cos A = 1$ .Let us substitute the obtained $\sin A$ and $\cos A$ values.
$
\Rightarrow 2\sin A.\cos A = 1 \\
\Rightarrow 2(\dfrac{1}{{\sqrt 2 }})(\dfrac{1}{{\sqrt 2 }}) = 1 \\
\Rightarrow \dfrac{2}{2} = 1 \\
\Rightarrow 1 = 1[\therefore L.H.S = R.H.S] \\
$
Therefore, we verified that the value of $2\sin A\cos A$ is 1.
Note: The alternate approach to solve the given problem is by using the formula of double angle i.e..,$2\sin A\cos A = \sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}$.
Complete step-by-step answer:
Given,
In a right angle triangle ABC, right-angled at B i.e..,$\angle ABC = {90^0}$
And it is also given that $\tan A = 1$i.e.., $\dfrac{{BC}}{{AB}} = 1[\because \tan \theta = \dfrac{{opp}}{{Adj}}]$.
Therefore, $BC = AB$
Let, $AB = BC = k$ where ‘k’ is a positive number.
As we know that $A{C^2} = A{B^2} + B{C^2}[\because $Pythagoras Theorem]
Now let us substitute the value of AB, BC as ‘k’, we get
$
\Rightarrow A{C^2} = {k^2} + {k^2} \\
\Rightarrow A{C^2} = 2{k^2} \\
\Rightarrow AC = \sqrt 2 k \\
$
Now, let us find the value of $\sin A$ and $\cos A$.
$ \Rightarrow \sin A = \dfrac{{opp}}{{hyp}} = \dfrac{{BC}}{{AC}} = \dfrac{k}{{\sqrt 2 k}} = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow \cos A = \dfrac{{adj}}{{hyp}} = \dfrac{{AB}}{{AC}} = \dfrac{k}{{\sqrt 2 k}} = \dfrac{1}{{\sqrt 2 }}$
Now, we need to verify $2\sin A\cos A = 1$ .Let us substitute the obtained $\sin A$ and $\cos A$ values.
$
\Rightarrow 2\sin A.\cos A = 1 \\
\Rightarrow 2(\dfrac{1}{{\sqrt 2 }})(\dfrac{1}{{\sqrt 2 }}) = 1 \\
\Rightarrow \dfrac{2}{2} = 1 \\
\Rightarrow 1 = 1[\therefore L.H.S = R.H.S] \\
$
Therefore, we verified that the value of $2\sin A\cos A$ is 1.
Note: The alternate approach to solve the given problem is by using the formula of double angle i.e..,$2\sin A\cos A = \sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}$.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE