
In a skew-symmetric matrix, the diagonal elements are all
A) One
B) Zero
C) Different from each other
D) Non-zero
Answer
586.8k+ views
Hint: A square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]is said to be skew symmetric matrix if
$A' = - A$ or $A = - A'$, that is \[\mathop a\nolimits_{ij} = - \mathop a\nolimits_{ji} \]for all possible values of $i$ and $j$.
In transpose of a matrix, columns and rows are interchanged. Transpose denoted by: $A'{\text{ (or }}\mathop A\nolimits^T )$. For example:
If \[A = {\left[ {\begin{array}{*{20}{c}}
3 \\
{\sqrt 3 } \\
0
\end{array}{\text{ }}\begin{array}{*{20}{c}}
5 \\
1 \\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{3 \times 2}}\]
Then \[A' = {\left[ {\begin{array}{*{20}{c}}
3 \\
5
\end{array}\begin{array}{*{20}{c}}
{\sqrt 3 } \\
1
\end{array}\begin{array}{*{20}{c}}
0 \\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{2 \times 3}}\]
Complete step-by-step answer:
Step 1: Consider a square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]
Where $i$: row number and $j$: column number.
Step 2: Condition for skew symmetric matrix:
$A' = - A$
Here,$A'$is transpose of matrix A
i.e. \[\mathop a\nolimits_{ij} = - \mathop a\nolimits_{ji} \]
Step 3: Now, if we put $i = j$,
We have, \[\mathop a\nolimits_{ii} = - \mathop a\nolimits_{ii} \]
\[
\therefore 2\mathop a\nolimits_{ii} = 0 \\
\Rightarrow \mathop a\nolimits_{ii} = 0 \\
\] for all $i's$.
Step 4: diagonal elements of a square matrix
In the square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]
$A = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)$
Elements ${a_{11}},{a_{22}},{a_{33}}$ are diagonal elements.
${a_{ii}} = 0$
$ \Rightarrow {a_{11}} = {a_{22}} = {a_{33}} = 0$
All the diagonal elements of the skew symmetric matrix are zero. Thus, the correct option is (B).
Note: Another way to understand the solution.
We have a theorem: Any square matrix A with real number entries, $A - A'$is a skew symmetric matrix.
Example question: The skew symmetric matrix of matrix $B = \left[ {\begin{array}{*{20}{c}}
2&{ - 2}&{ - 4} \\
{ - 1}&3&4 \\
1&{ - 2}&{ - 3}
\end{array}} \right]$.
$A' = - A$ or $A = - A'$, that is \[\mathop a\nolimits_{ij} = - \mathop a\nolimits_{ji} \]for all possible values of $i$ and $j$.
In transpose of a matrix, columns and rows are interchanged. Transpose denoted by: $A'{\text{ (or }}\mathop A\nolimits^T )$. For example:
If \[A = {\left[ {\begin{array}{*{20}{c}}
3 \\
{\sqrt 3 } \\
0
\end{array}{\text{ }}\begin{array}{*{20}{c}}
5 \\
1 \\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{3 \times 2}}\]
Then \[A' = {\left[ {\begin{array}{*{20}{c}}
3 \\
5
\end{array}\begin{array}{*{20}{c}}
{\sqrt 3 } \\
1
\end{array}\begin{array}{*{20}{c}}
0 \\
{\dfrac{{ - 1}}{5}}
\end{array}} \right]_{2 \times 3}}\]
Complete step-by-step answer:
Step 1: Consider a square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]
Where $i$: row number and $j$: column number.
Step 2: Condition for skew symmetric matrix:
$A' = - A$
Here,$A'$is transpose of matrix A
i.e. \[\mathop a\nolimits_{ij} = - \mathop a\nolimits_{ji} \]
Step 3: Now, if we put $i = j$,
We have, \[\mathop a\nolimits_{ii} = - \mathop a\nolimits_{ii} \]
\[
\therefore 2\mathop a\nolimits_{ii} = 0 \\
\Rightarrow \mathop a\nolimits_{ii} = 0 \\
\] for all $i's$.
Step 4: diagonal elements of a square matrix
In the square matrix \[A = \left[ {\mathop a\nolimits_{ij} } \right]\]
$A = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)$
Elements ${a_{11}},{a_{22}},{a_{33}}$ are diagonal elements.
${a_{ii}} = 0$
$ \Rightarrow {a_{11}} = {a_{22}} = {a_{33}} = 0$
All the diagonal elements of the skew symmetric matrix are zero. Thus, the correct option is (B).
Note: Another way to understand the solution.
We have a theorem: Any square matrix A with real number entries, $A - A'$is a skew symmetric matrix.
Example question: The skew symmetric matrix of matrix $B = \left[ {\begin{array}{*{20}{c}}
2&{ - 2}&{ - 4} \\
{ - 1}&3&4 \\
1&{ - 2}&{ - 3}
\end{array}} \right]$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

