
In a standing wave formed as a result of reflection from a surface, the ratio of the amplitude at an antinode to that at node is x. The fraction of energy that is reflected is:
A. \[{\left[ {\dfrac{{x - 1}}{x}} \right]^2}\]
B. \[{\left[ {\dfrac{x}{{x + 1}}} \right]^2}\]
C. \[{\left[ {\dfrac{{x - 1}}{{x + 1}}} \right]^2}\]
D. \[{\left[ {\dfrac{1}{x}} \right]^2}\]
Answer
232.8k+ views
Hint: When two waves interfere then a stationary or standing wave is formed. In the question relation between the amplitude and x is given. As we know that the energy transported by any wave is directly proportional to the square of the amplitude. By using this concept, we can easily find the value for energy reflected.
Complete answer:
It is given that the ratio of the amplitude at an antinode to that at node is x.
\[\dfrac{{{A_i} + {A_r}}}{{{A_i} - {A_r}}} = x\]
Where \[{A_i}\] is the amplitude of incident wave and \[{A_r}\] is the amplitude of reflected waves.
By applying componendo and dividendo on both the sides, we get
\[\dfrac{{{A_r}}}{{{A_i}}} = \dfrac{{x - 1}}{{x + 1}}\]
As we know that energy that is reflected is directly proportional to the square of the amplitude.
\[E \propto {A^2}\]
\[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{{A_r}}}{{{A_i}}}} \right)^2} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Or \[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Therefore, the fraction of energy that is reflected is \[{\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Hence option C is the correct answer
Note: The energy (E) transported by a wave is directly proportional to the square of the amplitude (A) that is \[E \propto {A^2}\] . So whenever change occurs in the amplitude the square of that effect impacts the energy. This means that a doubling of the amplitude results in a quadrupling of the energy. The amplitude of a wave is defined as the distance from the centre lines to the top of a crest to the bottom of a trough.
Complete answer:
It is given that the ratio of the amplitude at an antinode to that at node is x.
\[\dfrac{{{A_i} + {A_r}}}{{{A_i} - {A_r}}} = x\]
Where \[{A_i}\] is the amplitude of incident wave and \[{A_r}\] is the amplitude of reflected waves.
By applying componendo and dividendo on both the sides, we get
\[\dfrac{{{A_r}}}{{{A_i}}} = \dfrac{{x - 1}}{{x + 1}}\]
As we know that energy that is reflected is directly proportional to the square of the amplitude.
\[E \propto {A^2}\]
\[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{{A_r}}}{{{A_i}}}} \right)^2} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Or \[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Therefore, the fraction of energy that is reflected is \[{\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Hence option C is the correct answer
Note: The energy (E) transported by a wave is directly proportional to the square of the amplitude (A) that is \[E \propto {A^2}\] . So whenever change occurs in the amplitude the square of that effect impacts the energy. This means that a doubling of the amplitude results in a quadrupling of the energy. The amplitude of a wave is defined as the distance from the centre lines to the top of a crest to the bottom of a trough.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

