
In a triangle $ABC$, $a = 4,b = 3,\angle A = 60^\circ $. Then $c$ is the root of which of the following equations?
A) ${c^2} - 3c - 7 = 0$
B) ${c^2} + 3c + 7 = 0$
C) ${c^2} - 3c + 7 = 0$
D) ${c^2} + 3c - 7 = 0$
Answer
474.3k+ views
Hint: Here we are given two sides and the angle of a triangle. So we can use the cosine rule to find the equation. Substituting the given data and simplifying we get the required equation.
Formula used: The cosine rule states that the square of the length of any side of a triangle equals the sum of the squares of the length of the other sides minus twice the product multiplied by the cosine of their included angle.
In symbols we have,
${a^2} = {b^2} + {c^2} - 2bc\cos A$
Or it can be also written as $\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
Complete step-by-step solution:
Given that in the triangle $ABC$, $a = 4,b = 3,\angle A = 60^\circ $.
We need to find the equation with $c$ as its root.
Here by conventional notation, $a,b,c$ represents the sides opposite to vertices $A,B,C$ respectively.
So we are given two sides and the included angle of the triangle.
Therefore we can apply the cosine rule here.
The cosine rule states that the square of the length of any side of a triangle equals the sum of the squares of the length of the other sides minus twice the product multiplied by the cosine of their included angle.
In symbols we have,
${a^2} = {b^2} + {c^2} - 2bc\cos A$
Or it can be also written as $\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
So we can substitute the given data.
This gives,
$\Rightarrow$$\cos 60^\circ = \dfrac{{{3^2} + {c^2} - {4^2}}}{{2 \times 3 \times c}}$
Simplifying we get,
$\Rightarrow$$\cos 60^\circ = \dfrac{{9 + {c^2} - 16}}{{6c}}$
$ \Rightarrow \cos 60^\circ = \dfrac{{{c^2} - 7}}{{6c}}$
We know, $\cos 60^\circ = \dfrac{1}{2}$.
Substituting this we get,
$\Rightarrow$$\dfrac{1}{2} = \dfrac{{{c^2} - 7}}{{6c}}$
Cross-multiplying we get,
$\Rightarrow$$2({c^2} - 7) = 6c$
Dividing both sides by $2$ we have,
$\Rightarrow$${c^2} - 7 = 3c$
$ \Rightarrow {c^2} - 3c - 7 = 0$
Thus we get the equation for which $c$ is the root.
$\therefore $ The answer is option A.
Note: Cosine rule can be used in cases if three sides are given or two sides and the included angle are given. There are three variables in the equation: three sides and one angle. So knowing three of them, we can solve for the fourth.
Formula used: The cosine rule states that the square of the length of any side of a triangle equals the sum of the squares of the length of the other sides minus twice the product multiplied by the cosine of their included angle.
In symbols we have,
${a^2} = {b^2} + {c^2} - 2bc\cos A$
Or it can be also written as $\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
Complete step-by-step solution:
Given that in the triangle $ABC$, $a = 4,b = 3,\angle A = 60^\circ $.
We need to find the equation with $c$ as its root.
Here by conventional notation, $a,b,c$ represents the sides opposite to vertices $A,B,C$ respectively.
So we are given two sides and the included angle of the triangle.
Therefore we can apply the cosine rule here.
The cosine rule states that the square of the length of any side of a triangle equals the sum of the squares of the length of the other sides minus twice the product multiplied by the cosine of their included angle.
In symbols we have,
${a^2} = {b^2} + {c^2} - 2bc\cos A$
Or it can be also written as $\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
So we can substitute the given data.
This gives,
$\Rightarrow$$\cos 60^\circ = \dfrac{{{3^2} + {c^2} - {4^2}}}{{2 \times 3 \times c}}$
Simplifying we get,
$\Rightarrow$$\cos 60^\circ = \dfrac{{9 + {c^2} - 16}}{{6c}}$
$ \Rightarrow \cos 60^\circ = \dfrac{{{c^2} - 7}}{{6c}}$
We know, $\cos 60^\circ = \dfrac{1}{2}$.
Substituting this we get,
$\Rightarrow$$\dfrac{1}{2} = \dfrac{{{c^2} - 7}}{{6c}}$
Cross-multiplying we get,
$\Rightarrow$$2({c^2} - 7) = 6c$
Dividing both sides by $2$ we have,
$\Rightarrow$${c^2} - 7 = 3c$
$ \Rightarrow {c^2} - 3c - 7 = 0$
Thus we get the equation for which $c$ is the root.
$\therefore $ The answer is option A.
Note: Cosine rule can be used in cases if three sides are given or two sides and the included angle are given. There are three variables in the equation: three sides and one angle. So knowing three of them, we can solve for the fourth.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Why do you think did the narrator call lie Amsterdam class 11 english CBSE

Tentacles of Hydra are A Hollow B Solid C Half hollow class 11 biology CBSE

What do you mean by public facilities
