Answer
Verified
449.7k+ views
Hint: Here we are given two sides and the angle of a triangle. So we can use the cosine rule to find the equation. Substituting the given data and simplifying we get the required equation.
Formula used: The cosine rule states that the square of the length of any side of a triangle equals the sum of the squares of the length of the other sides minus twice the product multiplied by the cosine of their included angle.
In symbols we have,
${a^2} = {b^2} + {c^2} - 2bc\cos A$
Or it can be also written as $\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
Complete step-by-step solution:
Given that in the triangle $ABC$, $a = 4,b = 3,\angle A = 60^\circ $.
We need to find the equation with $c$ as its root.
Here by conventional notation, $a,b,c$ represents the sides opposite to vertices $A,B,C$ respectively.
So we are given two sides and the included angle of the triangle.
Therefore we can apply the cosine rule here.
The cosine rule states that the square of the length of any side of a triangle equals the sum of the squares of the length of the other sides minus twice the product multiplied by the cosine of their included angle.
In symbols we have,
${a^2} = {b^2} + {c^2} - 2bc\cos A$
Or it can be also written as $\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
So we can substitute the given data.
This gives,
$\Rightarrow$$\cos 60^\circ = \dfrac{{{3^2} + {c^2} - {4^2}}}{{2 \times 3 \times c}}$
Simplifying we get,
$\Rightarrow$$\cos 60^\circ = \dfrac{{9 + {c^2} - 16}}{{6c}}$
$ \Rightarrow \cos 60^\circ = \dfrac{{{c^2} - 7}}{{6c}}$
We know, $\cos 60^\circ = \dfrac{1}{2}$.
Substituting this we get,
$\Rightarrow$$\dfrac{1}{2} = \dfrac{{{c^2} - 7}}{{6c}}$
Cross-multiplying we get,
$\Rightarrow$$2({c^2} - 7) = 6c$
Dividing both sides by $2$ we have,
$\Rightarrow$${c^2} - 7 = 3c$
$ \Rightarrow {c^2} - 3c - 7 = 0$
Thus we get the equation for which $c$ is the root.
$\therefore $ The answer is option A.
Note: Cosine rule can be used in cases if three sides are given or two sides and the included angle are given. There are three variables in the equation: three sides and one angle. So knowing three of them, we can solve for the fourth.
Formula used: The cosine rule states that the square of the length of any side of a triangle equals the sum of the squares of the length of the other sides minus twice the product multiplied by the cosine of their included angle.
In symbols we have,
${a^2} = {b^2} + {c^2} - 2bc\cos A$
Or it can be also written as $\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
Complete step-by-step solution:
Given that in the triangle $ABC$, $a = 4,b = 3,\angle A = 60^\circ $.
We need to find the equation with $c$ as its root.
Here by conventional notation, $a,b,c$ represents the sides opposite to vertices $A,B,C$ respectively.
So we are given two sides and the included angle of the triangle.
Therefore we can apply the cosine rule here.
The cosine rule states that the square of the length of any side of a triangle equals the sum of the squares of the length of the other sides minus twice the product multiplied by the cosine of their included angle.
In symbols we have,
${a^2} = {b^2} + {c^2} - 2bc\cos A$
Or it can be also written as $\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
So we can substitute the given data.
This gives,
$\Rightarrow$$\cos 60^\circ = \dfrac{{{3^2} + {c^2} - {4^2}}}{{2 \times 3 \times c}}$
Simplifying we get,
$\Rightarrow$$\cos 60^\circ = \dfrac{{9 + {c^2} - 16}}{{6c}}$
$ \Rightarrow \cos 60^\circ = \dfrac{{{c^2} - 7}}{{6c}}$
We know, $\cos 60^\circ = \dfrac{1}{2}$.
Substituting this we get,
$\Rightarrow$$\dfrac{1}{2} = \dfrac{{{c^2} - 7}}{{6c}}$
Cross-multiplying we get,
$\Rightarrow$$2({c^2} - 7) = 6c$
Dividing both sides by $2$ we have,
$\Rightarrow$${c^2} - 7 = 3c$
$ \Rightarrow {c^2} - 3c - 7 = 0$
Thus we get the equation for which $c$ is the root.
$\therefore $ The answer is option A.
Note: Cosine rule can be used in cases if three sides are given or two sides and the included angle are given. There are three variables in the equation: three sides and one angle. So knowing three of them, we can solve for the fourth.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers