In a YDSE bichromatic light of wavelength 400nm and 560nm are used. The distance between the slits is 0.1mm and the distance between the plane of the slits and screen is 1.0m. The minimum distance between two successive regions of complete darkness is
1) 4mm
2) 5.6mm
3) 14mm
4) 28mm
Answer
Verified
466.2k+ views
Hint: First consider that ${{n}^{th}}$ minima of first wavelength coincides with ${{m}^{th}}$ minima of second wavelength. Then equate both the equations. Then find the value of m and n in two cases considering two ratios. Then the location of minima is calculated using both the values of m and n. Thus the minimum distance between two successive regions is the difference of those two distances.
Formula used:
$\dfrac{(2n-1){{\lambda }_{1}}D}{2d}=\dfrac{(2m-1){{\lambda }_{2}}D}{2d}$
where, d is the distance between the slits.
D , the distance between the slit and screen.
${{\lambda }_{1}}\And {{\lambda }_{2}}$ are the wavelengths of light used.
m and n are the order of interference.
Complete answer:
Let ${{n}^{th}}$ minima of 400nm coincides with ${{m}^{th}}$ minima then,
$\dfrac{(2n-1){{\lambda }_{1}}D}{2d}=\dfrac{(2m-1){{\lambda }_{2}}D}{2d}$
$\Rightarrow $ (2n-1)$\times 400=(2m-1)\times 560$
$\dfrac{2n-1}{2m-1}=\dfrac{560}{400}=\dfrac{28}{20}=\dfrac{14}{10}=\dfrac{7}{5}$ =$\dfrac{21}{15}$
If we the ratio $\dfrac{7}{5}$, n=4 and m=3. Then take the second ratio $\dfrac{14}{10}$ , then n=7.5 and m=5.5. This is not acceptable. So consider the next ratio $\dfrac{21}{15}$ , n=11 and m= 8.
That is ${{4}^{th}}$ minima of 400nm coincides with the ${{3}^{rd}}$ minima of 560nm.Then the location of minima is,
${{y}_{1}}=\dfrac{(2\times 4-1)\times 400\times {{10}^{-6}}\times 1000}{2\times 0.1}=14mm$
Similarly ${{11}^{th}}$ minima of 400nm coincides with ${{8}^{th}}$ minima of 560nm. Then the location of minima is,
${{y}_{2}}=\dfrac{(2\times 8-1)(560\times {{10}^{-6}})\times 1000}{2\times 0.1}=42mm$
Therefore the required distance is,
${{y}_{2}}-{{y}_{_{1}}}=42-14=28mm$
Then the option(4) is correct.
Additional information:
To obtain constructive interference for a double slit, the path length difference must be an integral multiple of the wavelength.
$d\sin \theta =m\lambda $
For m= 0,1,-1,2,-2,…… (Constructive interference)
$d\sin \theta =\left( m+\dfrac{1}{2} \right)\lambda $
For m=0,1,-1,2,-2,……….(Destructive interference)
Here, $\lambda $ is the wavelength of light, d is the distance between the slits and m is the order of interference.
Note:
The value of m and n should not be a decimal or a fractional number. While calculating the value of m and n if we are getting a fractional or decimal number then we should take another set of ratios and we should find the values of m and n. Then by taking two values of m and n we can find the location of minima and the required distance is their difference.
Formula used:
$\dfrac{(2n-1){{\lambda }_{1}}D}{2d}=\dfrac{(2m-1){{\lambda }_{2}}D}{2d}$
where, d is the distance between the slits.
D , the distance between the slit and screen.
${{\lambda }_{1}}\And {{\lambda }_{2}}$ are the wavelengths of light used.
m and n are the order of interference.
Complete answer:
Let ${{n}^{th}}$ minima of 400nm coincides with ${{m}^{th}}$ minima then,
$\dfrac{(2n-1){{\lambda }_{1}}D}{2d}=\dfrac{(2m-1){{\lambda }_{2}}D}{2d}$
$\Rightarrow $ (2n-1)$\times 400=(2m-1)\times 560$
$\dfrac{2n-1}{2m-1}=\dfrac{560}{400}=\dfrac{28}{20}=\dfrac{14}{10}=\dfrac{7}{5}$ =$\dfrac{21}{15}$
If we the ratio $\dfrac{7}{5}$, n=4 and m=3. Then take the second ratio $\dfrac{14}{10}$ , then n=7.5 and m=5.5. This is not acceptable. So consider the next ratio $\dfrac{21}{15}$ , n=11 and m= 8.
That is ${{4}^{th}}$ minima of 400nm coincides with the ${{3}^{rd}}$ minima of 560nm.Then the location of minima is,
${{y}_{1}}=\dfrac{(2\times 4-1)\times 400\times {{10}^{-6}}\times 1000}{2\times 0.1}=14mm$
Similarly ${{11}^{th}}$ minima of 400nm coincides with ${{8}^{th}}$ minima of 560nm. Then the location of minima is,
${{y}_{2}}=\dfrac{(2\times 8-1)(560\times {{10}^{-6}})\times 1000}{2\times 0.1}=42mm$
Therefore the required distance is,
${{y}_{2}}-{{y}_{_{1}}}=42-14=28mm$
Then the option(4) is correct.
Additional information:
To obtain constructive interference for a double slit, the path length difference must be an integral multiple of the wavelength.
$d\sin \theta =m\lambda $
For m= 0,1,-1,2,-2,…… (Constructive interference)
$d\sin \theta =\left( m+\dfrac{1}{2} \right)\lambda $
For m=0,1,-1,2,-2,……….(Destructive interference)
Here, $\lambda $ is the wavelength of light, d is the distance between the slits and m is the order of interference.
Note:
The value of m and n should not be a decimal or a fractional number. While calculating the value of m and n if we are getting a fractional or decimal number then we should take another set of ratios and we should find the values of m and n. Then by taking two values of m and n we can find the location of minima and the required distance is their difference.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE