
In an A.P, the first term is 2 and the sum of first five terms is 5, then the ${\text{3}}{{\text{1}}^{st}}$term is:
$
{\text{a}}{\text{. 13}} \\
{\text{b}}{\text{. 17}} \\
{\text{c}}{\text{. - 13}} \\
{\text{d}}{\text{. }}\dfrac{{27}}{2} \\
{\text{e}}{\text{. - }}\dfrac{{27}}{2} \\
$
Answer
623.4k+ views
Hint: - ${n^{th}}$term of an A.P is given as$\left( {{a_n} = {a_1} + \left( {n - 1} \right)d} \right)$, (where d is the common difference)
Given data:
First term of an A.P$\left( {{a_1}} \right) = 2$……………… (1)
Sum of first five terms $\left( {{S_5}} \right) = 5$……………… (2)
Then we have to find out the value of ${\text{3}}{{\text{1}}^{st}}$term.
Now, we know that the sum of an A.P is
${{\text{S}}_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right)$, (where d is the common difference)
So, ${{\text{S}}_5} = \dfrac{5}{2}\left( {2{a_1} + \left( {5 - 1} \right)d} \right)$
Now from equation (1) and (2) we have
$
{{\text{S}}_5} = \dfrac{5}{2}\left( {2{a_1} + \left( {5 - 1} \right)d} \right) \\
\Rightarrow 5 = \dfrac{5}{2}\left( {2 \times 2 + 4d} \right) \\
\Rightarrow 2 = 4 + 4d \\
\Rightarrow d = \dfrac{{2 - 4}}{4} = \dfrac{{ - 2}}{4} = \dfrac{{ - 1}}{2} \\
$
Now, we have to find out the value of ${\text{3}}{{\text{1}}^{st}}$term.
As we know that the ${n^{th}}$term of an A.P is given as$\left( {{a_n} = {a_1} + \left( {n - 1} \right)d} \right)$
$ \Rightarrow {31^{th}}$Term of the A.P is
$ \Rightarrow {a_{31}} = 2 + \left( {31 - 1} \right)\left( {\dfrac{{ - 1}}{2}} \right) = \left( {2 - 15} \right) = - 13$
So, option (c) is correct.
Note: - In such types of questions the key concept we have to remember is that always remember all the general formulas of A.P which is stated above, then first find out the value of common difference using the formula of sum of an A.P then using the formula of ${n^{th}}$term of an A.P calculate the value of ${31^{th}}$term which is the required answer.
Given data:
First term of an A.P$\left( {{a_1}} \right) = 2$……………… (1)
Sum of first five terms $\left( {{S_5}} \right) = 5$……………… (2)
Then we have to find out the value of ${\text{3}}{{\text{1}}^{st}}$term.
Now, we know that the sum of an A.P is
${{\text{S}}_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right)$, (where d is the common difference)
So, ${{\text{S}}_5} = \dfrac{5}{2}\left( {2{a_1} + \left( {5 - 1} \right)d} \right)$
Now from equation (1) and (2) we have
$
{{\text{S}}_5} = \dfrac{5}{2}\left( {2{a_1} + \left( {5 - 1} \right)d} \right) \\
\Rightarrow 5 = \dfrac{5}{2}\left( {2 \times 2 + 4d} \right) \\
\Rightarrow 2 = 4 + 4d \\
\Rightarrow d = \dfrac{{2 - 4}}{4} = \dfrac{{ - 2}}{4} = \dfrac{{ - 1}}{2} \\
$
Now, we have to find out the value of ${\text{3}}{{\text{1}}^{st}}$term.
As we know that the ${n^{th}}$term of an A.P is given as$\left( {{a_n} = {a_1} + \left( {n - 1} \right)d} \right)$
$ \Rightarrow {31^{th}}$Term of the A.P is
$ \Rightarrow {a_{31}} = 2 + \left( {31 - 1} \right)\left( {\dfrac{{ - 1}}{2}} \right) = \left( {2 - 15} \right) = - 13$
So, option (c) is correct.
Note: - In such types of questions the key concept we have to remember is that always remember all the general formulas of A.P which is stated above, then first find out the value of common difference using the formula of sum of an A.P then using the formula of ${n^{th}}$term of an A.P calculate the value of ${31^{th}}$term which is the required answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

