Answer
Verified
498k+ views
Hint: In the above given question, keep in mind that the number of soldiers is only added to the existing number of soldiers and is not replaced. Also, try to formulate an equation with the given data so that the unknown values can be easily obtained.
It is given in the question that the food is enough for $60$ days for $800$ soldiers, that means that the food is constant such that
$s \times d = k$ … (1)
Where,
$s = $number of soldiers
$d = $number of days
$k = $constant
That is
After substituting the values in the equation (1), we get
$800 \times 60 = k$ … (2)
Now, according to the question$400$more soldiers have arrived, so the total number of soldiers is raised to $800 + 400 = 1200$
Now, let us assume the number of days for which the food will last for $1200$ soldiers be denoted as $x$.
Therefore, by using the equation (1) again, we get
$1200 \times x = k$ … (3)
After equating equation (2) and (3), we get
$ \Rightarrow 1200 \times x = 800 \times 60$
$ \Rightarrow 1200x = 48000$
$ \Rightarrow x = \dfrac{{48000}}{{1200}}$
$\therefore x = 40$
So, the number of days the food will last for $1200$ soldiers is $40$days.
Note: Whenever we face such types of problems, observe that the quantity of food is constant and we know that, if in a product one quantity is increased, the other has to be decreased. So, here if the number of soldiers increases, the number of days the food will last decreases and vice versa.
It is given in the question that the food is enough for $60$ days for $800$ soldiers, that means that the food is constant such that
$s \times d = k$ … (1)
Where,
$s = $number of soldiers
$d = $number of days
$k = $constant
That is
After substituting the values in the equation (1), we get
$800 \times 60 = k$ … (2)
Now, according to the question$400$more soldiers have arrived, so the total number of soldiers is raised to $800 + 400 = 1200$
Now, let us assume the number of days for which the food will last for $1200$ soldiers be denoted as $x$.
Therefore, by using the equation (1) again, we get
$1200 \times x = k$ … (3)
After equating equation (2) and (3), we get
$ \Rightarrow 1200 \times x = 800 \times 60$
$ \Rightarrow 1200x = 48000$
$ \Rightarrow x = \dfrac{{48000}}{{1200}}$
$\therefore x = 40$
So, the number of days the food will last for $1200$ soldiers is $40$days.
Note: Whenever we face such types of problems, observe that the quantity of food is constant and we know that, if in a product one quantity is increased, the other has to be decreased. So, here if the number of soldiers increases, the number of days the food will last decreases and vice versa.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE