Answer
Verified
482.4k+ views
Hint: Assign a variable for correct answers and another variable for wrong answers. Now write down the two equations involving these two variables from the given information and solve them by substitution to get the final answer.
Complete step-by-step answer:
Let the number of questions he answered correctly be x and the number of questions he answered wrongly be y. The total number of questions he attempted is given as 75, then, we have:
\[x + y = 75\]
\[y = 75 - x............(1)\]
The student gains 4 marks for every correct answer and loses one mark for every wrong answer. The total marks he got is 125, then, we have:
\[4x - y = 125\]
Substituting equation (1) into equation (2), we have:
\[4x - (75 - x) = 125\]
Taking the negative sign inside the bracket, we get:
\[4x - 75 + x = 125\]
Adding the x terms and taking – 75 to the right-hand side of the equation, we obtain:
\[5x = 125 + 75\]
We know that 125 added to 75 gives 200. Hence, we have:
\[5x = 200\]
Solving for x by dividing both sides by 5, we have:
\[x = \dfrac{{200}}{5}\]
\[x = 40\]
Therefore, the value of x is 40.
Hence, the number of questions he attempted correctly is 40.
Hence, the correct answer is the option (b).
Note: You can also find the value of the number of questions he attempted wrongly and then substitute to find the number of questions he attempted correctly. The answer is invariant of the order in which we find the variables.
Complete step-by-step answer:
Let the number of questions he answered correctly be x and the number of questions he answered wrongly be y. The total number of questions he attempted is given as 75, then, we have:
\[x + y = 75\]
\[y = 75 - x............(1)\]
The student gains 4 marks for every correct answer and loses one mark for every wrong answer. The total marks he got is 125, then, we have:
\[4x - y = 125\]
Substituting equation (1) into equation (2), we have:
\[4x - (75 - x) = 125\]
Taking the negative sign inside the bracket, we get:
\[4x - 75 + x = 125\]
Adding the x terms and taking – 75 to the right-hand side of the equation, we obtain:
\[5x = 125 + 75\]
We know that 125 added to 75 gives 200. Hence, we have:
\[5x = 200\]
Solving for x by dividing both sides by 5, we have:
\[x = \dfrac{{200}}{5}\]
\[x = 40\]
Therefore, the value of x is 40.
Hence, the number of questions he attempted correctly is 40.
Hence, the correct answer is the option (b).
Note: You can also find the value of the number of questions he attempted wrongly and then substitute to find the number of questions he attempted correctly. The answer is invariant of the order in which we find the variables.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE