In C.G.S. system of units the unit of pressure is ${{{\rm{dyne}}} {\left/
{\vphantom {{{\rm{dyne}}} {{\rm{c}}{{\rm{m}}^{\rm{2}}}}}} \right.
} {{\rm{c}}{{\rm{m}}^{\rm{2}}}}}$ in a new system of units, the unit of mass is ${\rm{1}}\;{\rm{milligram}}$, unit of length is ${\rm{1}}\;{\rm{mm}}$ and unit of time is ${\rm{1}}\;{\rm{millisecond}}$ . Let the unit of pressure in this new system be dyne. The value of ${\rm{1}}\;{\rm{dyne}}$ is equal to
A.\[{10^{ + 4}}\;{{{\rm{dyne}}} {\left/ {\vphantom {{{\rm{dyne}}} {{\rm{c}}{{\rm{m}}^{\rm{2}}}}}} \right.} {{\rm{c}}{{\rm{m}}^{\rm{2}}}}}\]
B.\[1\;{{{\rm{dyne}}} {\left/ {\vphantom {{{\rm{dyne}}} {{\rm{c}}{{\rm{m}}^{\rm{2}}}}}} \right.} {{\rm{c}}{{\rm{m}}^{\rm{2}}}}}\]
C.\[{10^{ - 2}}\;{{{\rm{dyne}}} {\left/ {\vphantom {{{\rm{dyne}}} {{\rm{c}}{{\rm{m}}^{\rm{2}}}}}} \right.} {{\rm{c}}{{\rm{m}}^{\rm{2}}}}}\]
D.\[{10^{ - 3}}\;{{{\rm{dyne}}} {\left/ {\vphantom {{{\rm{dyne}}} {{\rm{c}}{{\rm{m}}^{\rm{2}}}}}} \right.} {{\rm{c}}{{\rm{m}}^{\rm{2}}}}}\]
Answer
Verified
456.9k+ views
Hint: To solve this question we will first write the S.I. unit of Force which is Newton. Then we write Newton in terms of mass, length and time. Now. We will write the C.G.S. unit of force by converting the units. Now we write the expression for the new unit. We need to find the relation between the new unit and the C.G.S. unit of force.
Complete step by step solution:
Dyne is the C.G.S. unit of force. The S.I. system, unit of force is Newton. We know that Newton can be represented as
$1\;{\rm{N}} = \dfrac{{{\rm{kg}} \cdot {\rm{m}}}}{{{{\rm{s}}^{\rm{2}}}}}$
Therefore, in C.G.S. unit we can write dyne as
${\rm{1}}\;{\rm{dyne}} = \dfrac{{{\rm{g}} \cdot {\rm{cm}}}}{{{{\rm{s}}^{\rm{2}}}}}$
It is given in the question that in the new system of unit mass is given as ${\rm{1}}\;{\rm{milligram}}$, unit length is given as ${\rm{1}}\;{\rm{mm}}$ and unit time is given as ${\rm{1}}\;{\rm{millisecond}}$.
We will rewrite the expression of dyne in the new units.
\[{\rm{1}}\;{\rm{dyne}} = \dfrac{{\left( {{\rm{1}}\;{\rm{mg}}} \right) \cdot \left( {{\rm{1}}\;{\rm{mm}}} \right)}}{{{{\left( {{\rm{1}}\;{\rm{ms}}} \right)}^{\rm{2}}}}}\]
But we know that $1\;{\rm{mg}}$ can be replaced by \[{\rm{1}}{{\rm{0}}^{ - 3}}\;{\rm{g}}\] , $1\;{\rm{mm}}$ can be replaced by ${10^{ - 1}}\;{\rm{cm}}$ and $1\;{\rm{ms}}$ can be replaced by ${10^{ - 3}}\;{\rm{s}}$ . Hence dyne can be written as
$
{\rm{1}}\;{\rm{dyne}} = \dfrac{{\left( {{\rm{1}}{{\rm{0}}^{ - 3}}\;{\rm{g}}} \right) \cdot \left( {{\rm{1}}{{\rm{0}}^{ - 1}}\;c{\rm{m}}} \right)}}{{{{\left( {{\rm{1}}{{\rm{0}}^{ - 2}}\;{\rm{s}}} \right)}^{\rm{2}}}}}\\
\implies {\rm{1}}\;{\rm{dyne}} = {10^{ - 2}}\dfrac{{{\rm{g}} \cdot {\rm{cm}}}}{{{{\rm{s}}^{\rm{2}}}}}
$
It is given that pressure in the C.G.S. unit is expressed as $\dfrac{{{\rm{dyne}}}}{{{\rm{c}}{{\rm{m}}^{\rm{2}}}}}$ . But in the new unit the unit of pressure is expressed as ${\rm{dyne}}$.
From the above expression. we can write pressure as \[{\rm{Pressure}} = {10^{ - 2}}{\rm{dyne}}\]
From this expression we can conclude that
$1\;{\rm{dyne}} = {10^{ - 2}}\dfrac{{{\rm{dyne}}}}{{{\rm{c}}{{\rm{m}}^{\rm{2}}}}}$
Therefore, the value of ${\rm{1}}\;{\rm{dyne}}$ is ${10^{ - 2}}\dfrac{{{\rm{dyne}}}}{{{\rm{c}}{{\rm{m}}^{\rm{2}}}}}$
So, the correct answer is “Option C”.
Note:
In order to solve this question, we should have the prior knowledge of unit conversion. This question is totally based on the conversion of units. The units in S.I. can be converted into units in C.G.S. by converting the length, mass and time. Also, we need to check for the units given in the question, since it can vary from question to question.
Complete step by step solution:
Dyne is the C.G.S. unit of force. The S.I. system, unit of force is Newton. We know that Newton can be represented as
$1\;{\rm{N}} = \dfrac{{{\rm{kg}} \cdot {\rm{m}}}}{{{{\rm{s}}^{\rm{2}}}}}$
Therefore, in C.G.S. unit we can write dyne as
${\rm{1}}\;{\rm{dyne}} = \dfrac{{{\rm{g}} \cdot {\rm{cm}}}}{{{{\rm{s}}^{\rm{2}}}}}$
It is given in the question that in the new system of unit mass is given as ${\rm{1}}\;{\rm{milligram}}$, unit length is given as ${\rm{1}}\;{\rm{mm}}$ and unit time is given as ${\rm{1}}\;{\rm{millisecond}}$.
We will rewrite the expression of dyne in the new units.
\[{\rm{1}}\;{\rm{dyne}} = \dfrac{{\left( {{\rm{1}}\;{\rm{mg}}} \right) \cdot \left( {{\rm{1}}\;{\rm{mm}}} \right)}}{{{{\left( {{\rm{1}}\;{\rm{ms}}} \right)}^{\rm{2}}}}}\]
But we know that $1\;{\rm{mg}}$ can be replaced by \[{\rm{1}}{{\rm{0}}^{ - 3}}\;{\rm{g}}\] , $1\;{\rm{mm}}$ can be replaced by ${10^{ - 1}}\;{\rm{cm}}$ and $1\;{\rm{ms}}$ can be replaced by ${10^{ - 3}}\;{\rm{s}}$ . Hence dyne can be written as
$
{\rm{1}}\;{\rm{dyne}} = \dfrac{{\left( {{\rm{1}}{{\rm{0}}^{ - 3}}\;{\rm{g}}} \right) \cdot \left( {{\rm{1}}{{\rm{0}}^{ - 1}}\;c{\rm{m}}} \right)}}{{{{\left( {{\rm{1}}{{\rm{0}}^{ - 2}}\;{\rm{s}}} \right)}^{\rm{2}}}}}\\
\implies {\rm{1}}\;{\rm{dyne}} = {10^{ - 2}}\dfrac{{{\rm{g}} \cdot {\rm{cm}}}}{{{{\rm{s}}^{\rm{2}}}}}
$
It is given that pressure in the C.G.S. unit is expressed as $\dfrac{{{\rm{dyne}}}}{{{\rm{c}}{{\rm{m}}^{\rm{2}}}}}$ . But in the new unit the unit of pressure is expressed as ${\rm{dyne}}$.
From the above expression. we can write pressure as \[{\rm{Pressure}} = {10^{ - 2}}{\rm{dyne}}\]
From this expression we can conclude that
$1\;{\rm{dyne}} = {10^{ - 2}}\dfrac{{{\rm{dyne}}}}{{{\rm{c}}{{\rm{m}}^{\rm{2}}}}}$
Therefore, the value of ${\rm{1}}\;{\rm{dyne}}$ is ${10^{ - 2}}\dfrac{{{\rm{dyne}}}}{{{\rm{c}}{{\rm{m}}^{\rm{2}}}}}$
So, the correct answer is “Option C”.
Note:
In order to solve this question, we should have the prior knowledge of unit conversion. This question is totally based on the conversion of units. The units in S.I. can be converted into units in C.G.S. by converting the length, mass and time. Also, we need to check for the units given in the question, since it can vary from question to question.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE