Answer
Verified
436.8k+ views
Hint: The general equation for the amplitude(x) in damped oscillation is given as $x = {a_0}\exp \left( { - \alpha t} \right)$, where a$_0$ is the initial amplitude, $\alpha $ is a constant and t is time. One oscillation is completed in one time period(T). Therefore on substituting the time taken in the two cases (50T and 150T) and comparing the equations we get the desired amplitude(x).
Complete step by step answer:
Given the initial amplitude is a$_0$.
The general equation for amplitude(x) of damped oscillation is given as,
$x = {a_0}\exp \left( { - \alpha t} \right)$ -----(1)
where ${a_0}$ is the initial amplitude, $\alpha $ is a constant and t is time.
The time taken to complete one oscillation is one time period(T).
Case 1: Given the time taken is equal to 50 oscillation$ = 50T$.Amplitude is equal to 0.8 ${a_0}$.
Substituting the given values in equation (1) we get,
$0.8{a_0} = {a_0}\exp ( - \alpha.50T)$
$ \Rightarrow \exp ( - \alpha.50T) = 0.8$ ------------(2)
Case 2: Given the time taken is equal to 50 oscillation$ = 150T$.
Let the unknown amplitude be equal to x.
Substituting the given values in equation (1) we get,
$
x = {a_0}\exp ( - \alpha.150T) \\
\Rightarrow x = {a_0}{\left[ {\exp \left( { - \alpha.50T} \right)} \right]^3} \\
$
Substituting value from equation (2), $\exp ( - \alpha.50T) = 0.8$ we get
$\therefore x = {a_0}{\left( {0.8} \right)^3}$
Therefore the required amplitude is $x = {a_0}{\left( {0.8} \right)^3}$$ = 0.512{a_0}$.
Note:One should know the general formula for amplitude of a particle in damped oscillation motion to solve such a type of question, $x = {a_0}\exp \left( { - \alpha t} \right)$, where a$_0$ is the initial amplitude, $\alpha $ is a constant and t is time.A simple harmonic motion for oscillating motion in which a damping force reduces the amplitude of the motion is known as damped oscillatory motion.
Complete step by step answer:
Given the initial amplitude is a$_0$.
The general equation for amplitude(x) of damped oscillation is given as,
$x = {a_0}\exp \left( { - \alpha t} \right)$ -----(1)
where ${a_0}$ is the initial amplitude, $\alpha $ is a constant and t is time.
The time taken to complete one oscillation is one time period(T).
Case 1: Given the time taken is equal to 50 oscillation$ = 50T$.Amplitude is equal to 0.8 ${a_0}$.
Substituting the given values in equation (1) we get,
$0.8{a_0} = {a_0}\exp ( - \alpha.50T)$
$ \Rightarrow \exp ( - \alpha.50T) = 0.8$ ------------(2)
Case 2: Given the time taken is equal to 50 oscillation$ = 150T$.
Let the unknown amplitude be equal to x.
Substituting the given values in equation (1) we get,
$
x = {a_0}\exp ( - \alpha.150T) \\
\Rightarrow x = {a_0}{\left[ {\exp \left( { - \alpha.50T} \right)} \right]^3} \\
$
Substituting value from equation (2), $\exp ( - \alpha.50T) = 0.8$ we get
$\therefore x = {a_0}{\left( {0.8} \right)^3}$
Therefore the required amplitude is $x = {a_0}{\left( {0.8} \right)^3}$$ = 0.512{a_0}$.
Note:One should know the general formula for amplitude of a particle in damped oscillation motion to solve such a type of question, $x = {a_0}\exp \left( { - \alpha t} \right)$, where a$_0$ is the initial amplitude, $\alpha $ is a constant and t is time.A simple harmonic motion for oscillating motion in which a damping force reduces the amplitude of the motion is known as damped oscillatory motion.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE