
In damped oscillations amplitude after 50 oscillations is 0.8 a$_0$ where a$_0$ is initial amplitude. Then amplitude after 150 oscillations will be
A. $\dfrac{{0.8}}{3}{a_0}$
B. 0.24${a_0}$
C. 0.512${a_0}$
D. 0.8${a_0}$
Answer
464.7k+ views
Hint: The general equation for the amplitude(x) in damped oscillation is given as $x = {a_0}\exp \left( { - \alpha t} \right)$, where a$_0$ is the initial amplitude, $\alpha $ is a constant and t is time. One oscillation is completed in one time period(T). Therefore on substituting the time taken in the two cases (50T and 150T) and comparing the equations we get the desired amplitude(x).
Complete step by step answer:
Given the initial amplitude is a$_0$.
The general equation for amplitude(x) of damped oscillation is given as,
$x = {a_0}\exp \left( { - \alpha t} \right)$ -----(1)
where ${a_0}$ is the initial amplitude, $\alpha $ is a constant and t is time.
The time taken to complete one oscillation is one time period(T).
Case 1: Given the time taken is equal to 50 oscillation$ = 50T$.Amplitude is equal to 0.8 ${a_0}$.
Substituting the given values in equation (1) we get,
$0.8{a_0} = {a_0}\exp ( - \alpha.50T)$
$ \Rightarrow \exp ( - \alpha.50T) = 0.8$ ------------(2)
Case 2: Given the time taken is equal to 50 oscillation$ = 150T$.
Let the unknown amplitude be equal to x.
Substituting the given values in equation (1) we get,
$
x = {a_0}\exp ( - \alpha.150T) \\
\Rightarrow x = {a_0}{\left[ {\exp \left( { - \alpha.50T} \right)} \right]^3} \\
$
Substituting value from equation (2), $\exp ( - \alpha.50T) = 0.8$ we get
$\therefore x = {a_0}{\left( {0.8} \right)^3}$
Therefore the required amplitude is $x = {a_0}{\left( {0.8} \right)^3}$$ = 0.512{a_0}$.
Note:One should know the general formula for amplitude of a particle in damped oscillation motion to solve such a type of question, $x = {a_0}\exp \left( { - \alpha t} \right)$, where a$_0$ is the initial amplitude, $\alpha $ is a constant and t is time.A simple harmonic motion for oscillating motion in which a damping force reduces the amplitude of the motion is known as damped oscillatory motion.
Complete step by step answer:
Given the initial amplitude is a$_0$.
The general equation for amplitude(x) of damped oscillation is given as,
$x = {a_0}\exp \left( { - \alpha t} \right)$ -----(1)
where ${a_0}$ is the initial amplitude, $\alpha $ is a constant and t is time.
The time taken to complete one oscillation is one time period(T).
Case 1: Given the time taken is equal to 50 oscillation$ = 50T$.Amplitude is equal to 0.8 ${a_0}$.
Substituting the given values in equation (1) we get,
$0.8{a_0} = {a_0}\exp ( - \alpha.50T)$
$ \Rightarrow \exp ( - \alpha.50T) = 0.8$ ------------(2)
Case 2: Given the time taken is equal to 50 oscillation$ = 150T$.
Let the unknown amplitude be equal to x.
Substituting the given values in equation (1) we get,
$
x = {a_0}\exp ( - \alpha.150T) \\
\Rightarrow x = {a_0}{\left[ {\exp \left( { - \alpha.50T} \right)} \right]^3} \\
$
Substituting value from equation (2), $\exp ( - \alpha.50T) = 0.8$ we get
$\therefore x = {a_0}{\left( {0.8} \right)^3}$
Therefore the required amplitude is $x = {a_0}{\left( {0.8} \right)^3}$$ = 0.512{a_0}$.
Note:One should know the general formula for amplitude of a particle in damped oscillation motion to solve such a type of question, $x = {a_0}\exp \left( { - \alpha t} \right)$, where a$_0$ is the initial amplitude, $\alpha $ is a constant and t is time.A simple harmonic motion for oscillating motion in which a damping force reduces the amplitude of the motion is known as damped oscillatory motion.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
According to Bernoullis equation the expression which class 11 physics CBSE

A solution of a substance X is used for white washing class 11 chemistry CBSE

10 examples of friction in our daily life

Simon Commission came to India in A 1927 B 1928 C 1929 class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

Can anyone list 10 advantages and disadvantages of friction
