
In fcc structure, octahedral sites are present at:
A). Edge centres
B). Face centres
C). Body centers
D). Corners
Answer
494.1k+ views
Hint: The octahedral voids are located at the body centres and at the centres of the 12 edges of the cube. Number of octahedral voids per unit cell in a cubic close packing is 4.
Complete step-by-step answer:
-Let us consider the unit cell of cubic close packing lattice structure.
-The body centre of the cube is not occupied by any atom but its surrounded by six atoms at the face centres.
-If the atoms at the face centres are joined, a regular octahedron is generated.
-Thus, an octahedral void is located at the body center of the unit cell of ccp lattice.
-In addition to the octahedral void at the body centre there are 12 octahedral voids at the centres of the 12 edges of the cube.
-Each octahedral void on the edge centre is being shared by four unit cells.
-Thus, in cubic close packing the number of octahedral voids per unit cell can be calculated as under:
Number of octahedral voids per unit cell in a cubic close packing
= 1 (centre of the cubic) + 12 (at edge centres) x
= 1 + 3 = 4
Clearly the answers are A and C.
Note: Do not confuse with the tetrahedral voids. There is one such void in the tetrahedron of ccp lattice. There are a total of eight tetrahedral voids in the unit cell of ccp structure. They are located on the body centres of the cube structure.
Complete step-by-step answer:
-Let us consider the unit cell of cubic close packing lattice structure.

-The body centre of the cube is not occupied by any atom but its surrounded by six atoms at the face centres.
-If the atoms at the face centres are joined, a regular octahedron is generated.
-Thus, an octahedral void is located at the body center of the unit cell of ccp lattice.
-In addition to the octahedral void at the body centre there are 12 octahedral voids at the centres of the 12 edges of the cube.
-Each octahedral void on the edge centre is being shared by four unit cells.
-Thus, in cubic close packing the number of octahedral voids per unit cell can be calculated as under:
Number of octahedral voids per unit cell in a cubic close packing
= 1 (centre of the cubic) + 12 (at edge centres) x
= 1 + 3 = 4
Clearly the answers are A and C.
Note: Do not confuse with the tetrahedral voids. There is one such void in the tetrahedron of ccp lattice. There are a total of eight tetrahedral voids in the unit cell of ccp structure. They are located on the body centres of the cube structure.
Recently Updated Pages
Master Class 4 Maths: Engaging Questions & Answers for Success

Master Class 4 English: Engaging Questions & Answers for Success

Master Class 4 Science: Engaging Questions & Answers for Success

Class 4 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

What is the difference between resemblance and sem class 12 social science CBSE

Why do the transition elements have higher enthalpies class 12 chemistry CBSE

In forest ecosystem pyramid of number is a Upright class 12 biology CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Which of the following is a renewable resource A Natural class 12 physics CBSE
