Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

In Fresnel’s biprism experiment, when light of wavelength 6000A is used, 16th bright fringe is obtained at point P. If light of wavelength 4800A is used, then the order of fringe obtained at point P will be
A) 16th
B) 20th
C) 18th
D) 24th

Answer
VerifiedVerified
496.5k+ views
like imagedislike image
Hint: Fresnel’s biprism experiment is a special case of Young’s double slit experiment. The fringe widths obtained through both the experiments have similar formulas. The order of fringe at a particular point due to a monochromatic light source can be determined by comparing its fringe width to the fringe width obtained using another monochromatic light source at the same point.

Complete answer:
Fresnel’s biprism experiment is a variation of Young’s double slit experiment. In Fresnel’s biprism experiment, two prisms which are connected through their bases are used. When monochromatic light of a particular wavelength is allowed to fall on this setup, an interference pattern involving bright and dark fringes is observed on a screen kept on the other side of the biprism. It is seen that the interference pattern is concentrated at the centre of the screen and appears to fall from two virtual sources of monochromatic light behind the prism. Thus, this experiment is similar to Young’s double slit experiment, which uses two light sources. The fringe width obtained using Fresnel’s biprism and that obtained using Young’s double slit experiment have the same formulas.

seo images


In Fresnel’s biprism experiment, the fringe width is given by
β=λDd
where
β is the fringe width
D is the distance between the virtual light sources and the screen
d is the distance between the virtual light sources.
Let this be equation 1.
From the question, we are provided that a monochromatic light of wavelength 6000A is used in the first trial. Let this wavelength be represented as λ1. Also, let the fringe width in the interference pattern due to this light source be β1. This fringe width is calculated using equation 1 as shown below.
β1=λ1Dd=6000Dd
Let this be equation 2.
It is also given that the 16th bright fringe in the interference pattern is obtained at a point P. We know that the fringe width of a bright fringe of a particular order is given by
βn=nλDd
where
n is the order of the fringe
βn is the fringe width of a bright fringe of nth order
Therefore, the fringe width of 16th bright fringe is given by
β16=16λDd
Let this be equation 3.
Substituting equation 2 in equation 3, we have
β16=16λDd=16×6000Dd
Let this be equation 4.
Now, let us move on to the second trial, where a monochromatic light source of wavelength 4800A is used to obtain fringes. Let this wavelength be represented as λ and let the fringe width be represented as β. From equation 1, it is clear that β is given by
β=λDd=4800Dd
Let this be equation 5.
Now, the fringe width of a fringe of a particular order n obtained at point P due to this source of light is given by
βn=nλDd=n×4800Dd
Let this be equation 6.
To determine the value of n, we divide equation 4 by equation 6 and equate it to one as follows.
β16βn=116×6000Ddn×4800Dd=116×6000n×4800=1n=16×60004800=20
Therefore, the order of fringe at the point P when a light of wavelength 4800A is used, is equal to 20.

So, the correct answer is “Option B”.

Note:
In the last step, to obtain the value of n, we divide equation 4 by equation 6 and equate the expression to one. The reason behind this method of calculation is that the fringe width remains the same at a particular point in the interference pattern. Here, point P is not moving and the fringe widths due to lights of wavelengths 6000A and 4800A are the same here. Only the orders of the fringes change.