Answer
Verified
393.6k+ views
Hint: To solve this question we need to have the concept of combinations. We will be analysing the problem and will be considering 4 non integral numbers which will result into three sovereigns and then writing of the number of ways in which it should be distributed among the four applicants.
Complete step-by-step solution:
The question asks us to find the number of ways in which three sovereigns should be given to four applicants where the applicants can be given either of $0,1,2$or $3$ sovereigns.
The first step to solve this question is to consider four non-negative integral variables which show the number of sovereigns given to the four applicants, so consider the variables to be $x,y,z,w$ . So on writing it mathematically we get:
$\Rightarrow x+y+z+w=3$
The second step is to find the number of required ways in which number of sovereigns should be distributed. For calculation we will use the function of Combination. So in mathematical form we will write:
$\Rightarrow {}^{\left( 3+4-1 \right)}{{C}_{\left( 4-1 \right)}}$
The above formula shows the distribution of n things among r distinct persons as here we had to give the 3 sovereigns to 4 persons.
On calculating the term we get:
$\Rightarrow {}^{6}{{C}_{3}}$
To solve the above Combination we will use the formula of the combination ${}^{n}{{C}_{r}}$ as $\dfrac{n!}{r!\left( n-r \right)!}$ . On applying the same formula we get:
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6!}{3!\left( 6-3 \right)!}$
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6!}{3!3!}$
On further calculation the above expression changes to:
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6\times 5\times 4\times 3!}{3!3!}$
Now the term $3!$ will cancel since the term is common.
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6\times 5\times 4}{3\times 2\times 1}$
$\Rightarrow {}^{6}{{C}_{3}}=5\times 4$
$\Rightarrow {}^{6}{{C}_{3}}=20$
$\therefore $ The number of ways can $3$ sovereigns be given away when there are $4$ applicants and any applicant may have either $0,1,2$ or $3$sovereigns are option $B)20$.
Note: We need to remember the formula for the Combination ${}^{n}{{C}_{r}}$ is $\dfrac{n!}{r!\left( n-r \right)!}$ . The combination is used to find the number of arrangements which can take place. Do remember the term $n!$ means the product of all the natural numbers from $1$ to $n$. Mathematically it is written as: $n!=1\times 2\times 3.......\times \left( n-1 \right)\times \left( n \right)$
Complete step-by-step solution:
The question asks us to find the number of ways in which three sovereigns should be given to four applicants where the applicants can be given either of $0,1,2$or $3$ sovereigns.
The first step to solve this question is to consider four non-negative integral variables which show the number of sovereigns given to the four applicants, so consider the variables to be $x,y,z,w$ . So on writing it mathematically we get:
$\Rightarrow x+y+z+w=3$
The second step is to find the number of required ways in which number of sovereigns should be distributed. For calculation we will use the function of Combination. So in mathematical form we will write:
$\Rightarrow {}^{\left( 3+4-1 \right)}{{C}_{\left( 4-1 \right)}}$
The above formula shows the distribution of n things among r distinct persons as here we had to give the 3 sovereigns to 4 persons.
On calculating the term we get:
$\Rightarrow {}^{6}{{C}_{3}}$
To solve the above Combination we will use the formula of the combination ${}^{n}{{C}_{r}}$ as $\dfrac{n!}{r!\left( n-r \right)!}$ . On applying the same formula we get:
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6!}{3!\left( 6-3 \right)!}$
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6!}{3!3!}$
On further calculation the above expression changes to:
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6\times 5\times 4\times 3!}{3!3!}$
Now the term $3!$ will cancel since the term is common.
$\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6\times 5\times 4}{3\times 2\times 1}$
$\Rightarrow {}^{6}{{C}_{3}}=5\times 4$
$\Rightarrow {}^{6}{{C}_{3}}=20$
$\therefore $ The number of ways can $3$ sovereigns be given away when there are $4$ applicants and any applicant may have either $0,1,2$ or $3$sovereigns are option $B)20$.
Note: We need to remember the formula for the Combination ${}^{n}{{C}_{r}}$ is $\dfrac{n!}{r!\left( n-r \right)!}$ . The combination is used to find the number of arrangements which can take place. Do remember the term $n!$ means the product of all the natural numbers from $1$ to $n$. Mathematically it is written as: $n!=1\times 2\times 3.......\times \left( n-1 \right)\times \left( n \right)$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE