Answer
Verified
474.6k+ views
Hint: Use the fundamental principle of counting to count the number of possible ways of outcome.
In general the number of ways of selecting r people from a group of n people is $^{n}{{C}_{r}}$.
Formula for $^{n}{{C}_{r}}$ is
${{\Rightarrow }^{n}}{{C}_{r}}=\dfrac{n!}{r!\times (n-r)!}$
Complete step-by-step answer:
Total no. of ways of selecting 3 men from 6 men is \[6\mathop{c}_{3}\]
Total no. of ways of selecting 2 women from 5 women is \[5\mathop{c}_{2}\]
By using fundamental principle of counting
Total no. of ways of selecting \[3\]men from \[6\]men and total no. of ways of selecting \[2\] women from women is selected like
\[\Rightarrow 6\mathop{c}_{3}\times 5\mathop{c}_{2}\]
\[\Rightarrow \dfrac{6!}{3!3!}\times \dfrac{5!}{2!3!}\] \[\left( \because n\mathop{c}_{r}=\dfrac{n!}{r!(n-r)!} \right)\]
\[\Rightarrow \dfrac{6\times 5\times 4\times 3\times 2\times 1}{3\times 2\times 3\times 2}\times \dfrac{5\times 4\times 3\times 2\times 1}{2\times 1\times 3\times 2\times 1}\]
\[\Rightarrow 200\]ways
Hence in a committee of 5 members selected from 6 men and 5 women consisting 3 men and 2 women is 200 ways.
Note: The fundamental counting principle is used to count no of possible outcomes.
It explains if there are p ways of doing one event and q ways of doing another event then there are \[p\times q\] ways to perform both of these events.
In general the number of ways of selecting r people from a group of n people is $^{n}{{C}_{r}}$.
Formula for $^{n}{{C}_{r}}$ is
${{\Rightarrow }^{n}}{{C}_{r}}=\dfrac{n!}{r!\times (n-r)!}$
Complete step-by-step answer:
Total no. of ways of selecting 3 men from 6 men is \[6\mathop{c}_{3}\]
Total no. of ways of selecting 2 women from 5 women is \[5\mathop{c}_{2}\]
By using fundamental principle of counting
Total no. of ways of selecting \[3\]men from \[6\]men and total no. of ways of selecting \[2\] women from women is selected like
\[\Rightarrow 6\mathop{c}_{3}\times 5\mathop{c}_{2}\]
\[\Rightarrow \dfrac{6!}{3!3!}\times \dfrac{5!}{2!3!}\] \[\left( \because n\mathop{c}_{r}=\dfrac{n!}{r!(n-r)!} \right)\]
\[\Rightarrow \dfrac{6\times 5\times 4\times 3\times 2\times 1}{3\times 2\times 3\times 2}\times \dfrac{5\times 4\times 3\times 2\times 1}{2\times 1\times 3\times 2\times 1}\]
\[\Rightarrow 200\]ways
Hence in a committee of 5 members selected from 6 men and 5 women consisting 3 men and 2 women is 200 ways.
Note: The fundamental counting principle is used to count no of possible outcomes.
It explains if there are p ways of doing one event and q ways of doing another event then there are \[p\times q\] ways to perform both of these events.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Find the value of the expression given below sin 30circ class 11 maths CBSE
What is the length of the alimentary canal in human class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is BLO What is the full form of BLO class 8 social science CBSE