Answer
Verified
459k+ views
Hint: We know that, iodometric titration, is a volumetric qualitative analysis method, and it is a redox titration in which the disappearance of elementary iodine indicates the top point. The iodine liberated by reaction is titrated indirectly with the analyte, while the iodine is titrated directly with the titrant.
Complete step by step answer:
First, we discuss the procedure of iodometric estimation:
All the oxidizing agents oxidize iodide ion to iodine in acidic condition. The iodine formed within the reaction can then be titrated by means of a typical hypo solution. This sort of indirect titration is given the overall name of iodometry.
Iodometric methods of study have a good applicability for the subsequent reasons:
Potassium iodide, KI, is quickly available in high purity.
A good indicator, starch, is out there to signal the equivalence point within the reaction between iodine and thiosulfate. Starch turns blue-black within the presence of iodine when the blue-black color disappears then the iodine is completely reduced to the iodide ion.
Iodometric reactions are rapid and quantitative.
An exact and stable reducer, hypo \[\left( {N{a_2}{S_2}{O_3}} \right)\] is out there to react with the iodine.
The amount of iodine liberated within the reaction between iodide ion and an oxidant may be a measure of the number of oxidants originally present within the solution. The quantity of ordinary hypo solution required to titrate the liberated iodine is then like the quantity of oxidant. Iodometric methods are often used for the quantitative determination of strong oxidizing agents like salt, permanganate, peroxide, cupric ion and oxygen.
The reactions in iodometric titration is,
$2C{u^{ + 2}} + 4{I^ - } \to C{u_2}{I_2} + {I_2}$
${I_2} + 2N{a_2}{S_2}{O_3} \to 2NaI + N{a_2}{S_4}{O_6}$
Given,
The number of moles pure copper sulfate is $0.12moles$.
The volume of $N{a_2}{S_2}{O_3}$ is$120ml$.
We can calculate the molarity of the solution using the formula,
${\text{Molarity}} = \dfrac{{{\text{Mass of solute}}\left( {{\text{in moles}}} \right)}}{{{\text{Volume of solution}}\left( {{\text{in litres}}} \right)}}$
We can calculate the molarity of the hypo solution as follows,
$\Rightarrow {\text{Molarity}} = \dfrac{{0.12moles}}{{0.120L}} = 1M$
The molarity of the hypo solution is $1M$.
So, the correct answer is Option D .
Note:
We can calculate the molality using the formula,
The mathematical expression of molality is,
${\text{Molarity}}\left( {\text{m}} \right) = \dfrac{{{\text{Moles of solute}}\left( {mol} \right)}}{{{\text{Kilograms of solvent}}\left( {kg} \right)}}$.
Complete step by step answer:
First, we discuss the procedure of iodometric estimation:
All the oxidizing agents oxidize iodide ion to iodine in acidic condition. The iodine formed within the reaction can then be titrated by means of a typical hypo solution. This sort of indirect titration is given the overall name of iodometry.
Iodometric methods of study have a good applicability for the subsequent reasons:
Potassium iodide, KI, is quickly available in high purity.
A good indicator, starch, is out there to signal the equivalence point within the reaction between iodine and thiosulfate. Starch turns blue-black within the presence of iodine when the blue-black color disappears then the iodine is completely reduced to the iodide ion.
Iodometric reactions are rapid and quantitative.
An exact and stable reducer, hypo \[\left( {N{a_2}{S_2}{O_3}} \right)\] is out there to react with the iodine.
The amount of iodine liberated within the reaction between iodide ion and an oxidant may be a measure of the number of oxidants originally present within the solution. The quantity of ordinary hypo solution required to titrate the liberated iodine is then like the quantity of oxidant. Iodometric methods are often used for the quantitative determination of strong oxidizing agents like salt, permanganate, peroxide, cupric ion and oxygen.
The reactions in iodometric titration is,
$2C{u^{ + 2}} + 4{I^ - } \to C{u_2}{I_2} + {I_2}$
${I_2} + 2N{a_2}{S_2}{O_3} \to 2NaI + N{a_2}{S_4}{O_6}$
Given,
The number of moles pure copper sulfate is $0.12moles$.
The volume of $N{a_2}{S_2}{O_3}$ is$120ml$.
We can calculate the molarity of the solution using the formula,
${\text{Molarity}} = \dfrac{{{\text{Mass of solute}}\left( {{\text{in moles}}} \right)}}{{{\text{Volume of solution}}\left( {{\text{in litres}}} \right)}}$
We can calculate the molarity of the hypo solution as follows,
$\Rightarrow {\text{Molarity}} = \dfrac{{0.12moles}}{{0.120L}} = 1M$
The molarity of the hypo solution is $1M$.
So, the correct answer is Option D .
Note:
We can calculate the molality using the formula,
The mathematical expression of molality is,
${\text{Molarity}}\left( {\text{m}} \right) = \dfrac{{{\text{Moles of solute}}\left( {mol} \right)}}{{{\text{Kilograms of solvent}}\left( {kg} \right)}}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE