Answer
Verified
459k+ views
Hint: We will find the value of $ \left| H \right| $ and power up the equation with $ 70 $ to get the value of $ {{H}^{70}} $ . After getting the value of $ {{H}^{70}} $ as $ {{\omega }^{140}} $ we use the formula $ {{\omega }^{3n}}=1 $ from the given data that $ \omega $ is the cube root of unity i.e. when we raised to the power f $ 3 $ we get the value as $ 1 $ . Mathematically $ {{\omega }^{3}}=1 $ for our convenience we can write
$ \begin{align}
& {{\left( {{\omega }^{3}} \right)}^{n}}={{1}^{n}} \\
& {{\omega }^{3n}}=1
\end{align} $
by using the property $ {{1}^{n}}=1 $ and simplify the equation to get the result.
Complete step by step answer:
Given that, $ H=\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right], $ $ \omega \ne 1 $
$\Rightarrow$ The value of $ \left| H \right| $ is
$ \begin{align}
& \left| H \right|=\left| \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right| \\
& ={{\omega }^{2}}
\end{align} $
$\Rightarrow$ Add power of $ 70 $ to the above equation, then
$ \begin{align}
& {{\left| H \right|}^{70}}={{\left( {{\omega }^{2}} \right)}^{70}} \\
& {{H}^{70}}={{\omega }^{140}}....\left( \text{i} \right)
\end{align} $
$\Rightarrow$ Given that, $ \omega $ is the cube root of the unity i.e.
$ \begin{align}
& \omega =\sqrt[3]{1} \\
& {{\omega }^{3n}}=1 \\
\end{align} $
$\Rightarrow$ Now from the equation $ \left( \text{i} \right) $
$ {{H}^{70}}={{\omega }^{140}} $
$\Rightarrow$ We are going to write $ 140 $ as multiple of $ 3 $ , then
$ {{H}^{70}}={{\omega }^{3\times 46+2}} $
Using the formula $ {{a}^{b+c}}={{a}^{b}}.{{a}^{c}} $ in the above equation then we have
$ {{H}^{70}}={{\omega }^{3\times 46}}.{{\omega }^{2}} $
$\Rightarrow$ We have $ {{\omega }^{3n}}=1 $ , so we can write $ {{\omega }^{3\times 46}}=1 $ in the above equation, then
$ \begin{align}
& {{H}^{70}}=1\left( {{\omega }^{2}} \right) \\
& {{H}^{70}}={{\omega }^{2}} \\
\end{align} $
$\Rightarrow$ But we have $ {{\omega }^{2}}=H $ so
$ {{H}^{70}}=H $
Note:
We can solve the problem by finding the values of $ {{H}^{2}},{{H}^{3}},{{H}^{4}},{{H}^{5}},{{H}^{6}} $
$ \begin{align}
& {{H}^{2}}=\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right]\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\omega \left( \omega \right) & 0 \\
0 & \omega \left( \omega \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\omega }^{2}} & 0 \\
0 & {{\omega }^{2}} \\
\end{matrix} \right]
\end{align} $
$ \begin{align}
& {{H}^{3}}={{H}^{2}}H \\
& =\left[ \begin{matrix}
{{\omega }^{2}} & 0 \\
0 & {{\omega }^{2}} \\
\end{matrix} \right]\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\omega }^{2}}\left( \omega \right) & 0 \\
0 & {{\omega }^{2}}\left( \omega \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =I
\end{align} $
$ \begin{align}
& {{H}^{4}}={{H}^{3}}.H \\
& =I.H \\
& =H
\end{align} $
$ \begin{align}
& {{H}^{5}}={{H}^{4}}.H \\
& =H.H \\
& ={{H}^{2}}
\end{align} $
$ \begin{align}
& {{H}^{6}}={{H}^{5}}.H \\
& ={{H}^{2}}.H \\
& ={{H}^{3}} \\
& =I
\end{align} $
From the above sequence we can say that
$ \begin{align}
& {{H}^{69}}={{\left( {{H}^{3}} \right)}^{13}} \\
& ={{I}^{13}} \\
& =I
\end{align} $
Now the value of $ {{H}^{70}} $ is
$ \begin{align}
& {{H}^{70}}={{H}^{69}}.H \\
& =I.H \\
& =H
\end{align} $
Don’t use the value of $ \omega $ as $ {{1}^{\dfrac{1}{3}}} $ in the equation $ {{H}^{70}}={{\omega }^{140}} $ as we can’t get the proper value of $ {{H}^{70}} $ . You only use the formula $ {{\omega }^{3n}}=1 $ and simplify $ {{\omega }^{140}} $ .
$ \begin{align}
& {{\left( {{\omega }^{3}} \right)}^{n}}={{1}^{n}} \\
& {{\omega }^{3n}}=1
\end{align} $
by using the property $ {{1}^{n}}=1 $ and simplify the equation to get the result.
Complete step by step answer:
Given that, $ H=\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right], $ $ \omega \ne 1 $
$\Rightarrow$ The value of $ \left| H \right| $ is
$ \begin{align}
& \left| H \right|=\left| \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right| \\
& ={{\omega }^{2}}
\end{align} $
$\Rightarrow$ Add power of $ 70 $ to the above equation, then
$ \begin{align}
& {{\left| H \right|}^{70}}={{\left( {{\omega }^{2}} \right)}^{70}} \\
& {{H}^{70}}={{\omega }^{140}}....\left( \text{i} \right)
\end{align} $
$\Rightarrow$ Given that, $ \omega $ is the cube root of the unity i.e.
$ \begin{align}
& \omega =\sqrt[3]{1} \\
& {{\omega }^{3n}}=1 \\
\end{align} $
$\Rightarrow$ Now from the equation $ \left( \text{i} \right) $
$ {{H}^{70}}={{\omega }^{140}} $
$\Rightarrow$ We are going to write $ 140 $ as multiple of $ 3 $ , then
$ {{H}^{70}}={{\omega }^{3\times 46+2}} $
Using the formula $ {{a}^{b+c}}={{a}^{b}}.{{a}^{c}} $ in the above equation then we have
$ {{H}^{70}}={{\omega }^{3\times 46}}.{{\omega }^{2}} $
$\Rightarrow$ We have $ {{\omega }^{3n}}=1 $ , so we can write $ {{\omega }^{3\times 46}}=1 $ in the above equation, then
$ \begin{align}
& {{H}^{70}}=1\left( {{\omega }^{2}} \right) \\
& {{H}^{70}}={{\omega }^{2}} \\
\end{align} $
$\Rightarrow$ But we have $ {{\omega }^{2}}=H $ so
$ {{H}^{70}}=H $
Note:
We can solve the problem by finding the values of $ {{H}^{2}},{{H}^{3}},{{H}^{4}},{{H}^{5}},{{H}^{6}} $
$ \begin{align}
& {{H}^{2}}=\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right]\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\omega \left( \omega \right) & 0 \\
0 & \omega \left( \omega \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\omega }^{2}} & 0 \\
0 & {{\omega }^{2}} \\
\end{matrix} \right]
\end{align} $
$ \begin{align}
& {{H}^{3}}={{H}^{2}}H \\
& =\left[ \begin{matrix}
{{\omega }^{2}} & 0 \\
0 & {{\omega }^{2}} \\
\end{matrix} \right]\left[ \begin{matrix}
\omega & 0 \\
0 & \omega \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
{{\omega }^{2}}\left( \omega \right) & 0 \\
0 & {{\omega }^{2}}\left( \omega \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& =I
\end{align} $
$ \begin{align}
& {{H}^{4}}={{H}^{3}}.H \\
& =I.H \\
& =H
\end{align} $
$ \begin{align}
& {{H}^{5}}={{H}^{4}}.H \\
& =H.H \\
& ={{H}^{2}}
\end{align} $
$ \begin{align}
& {{H}^{6}}={{H}^{5}}.H \\
& ={{H}^{2}}.H \\
& ={{H}^{3}} \\
& =I
\end{align} $
From the above sequence we can say that
$ \begin{align}
& {{H}^{69}}={{\left( {{H}^{3}} \right)}^{13}} \\
& ={{I}^{13}} \\
& =I
\end{align} $
Now the value of $ {{H}^{70}} $ is
$ \begin{align}
& {{H}^{70}}={{H}^{69}}.H \\
& =I.H \\
& =H
\end{align} $
Don’t use the value of $ \omega $ as $ {{1}^{\dfrac{1}{3}}} $ in the equation $ {{H}^{70}}={{\omega }^{140}} $ as we can’t get the proper value of $ {{H}^{70}} $ . You only use the formula $ {{\omega }^{3n}}=1 $ and simplify $ {{\omega }^{140}} $ .
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE