Answer
Verified
429.9k+ views
Hint: Here in this question, we are given a quadrilateral ACBD which is made up of two triangles i.e. $\Delta ABC$ and $\Delta ABD$. We have to prove that both the triangles are congruent to each other. For proving congruency, we have to apply rules of congruency.
Complete step by step answer:
Let’s solve the question now.
As we know that two triangles are congruent if they satisfy three conditions by applying any rule i.e. SSS rule, SAS, rule, ASA rule, AAS rule or by RHS rule. Here the SAS rule will be applied. SAS rule says that two sides and one angle should be equal if we want to make triangles congruent.
There is a quadrilateral ACBD which consists of two triangles $\Delta ABC$ and $\Delta ABD$. And it is also given that AC = BD. In the question, it is given that AB bisects $\angle A$ which means AB divides $\angle A$ into two equal parts i.e. $\angle CAB=\angle DAB$. To prove that two triangles are congruent, it is necessary that three conditions should be satisfied.
So, for $\Delta ABC$ and $\Delta ABD$,
$\Rightarrow $AB = AB (common side in both the triangles)
$\Rightarrow $ AC = AD (given)
$\Rightarrow \angle CAB=\angle DAB$ (AB bisects $\angle A$)
By SAS rule,
$\therefore \Delta ABC\cong \Delta ABD$
BC and BD are the sides of the congruent triangles.
$\therefore $BC = BD [ By Corresponding Parts of Congruent Triangles ]
Note: Students should note that while applying the conditions, the reasons for the condition should be written along with them in brackets. Then only marks will be given. Before applying the rule, first check all the necessary conditions satisfying that rule.
Complete step by step answer:
Let’s solve the question now.
As we know that two triangles are congruent if they satisfy three conditions by applying any rule i.e. SSS rule, SAS, rule, ASA rule, AAS rule or by RHS rule. Here the SAS rule will be applied. SAS rule says that two sides and one angle should be equal if we want to make triangles congruent.
There is a quadrilateral ACBD which consists of two triangles $\Delta ABC$ and $\Delta ABD$. And it is also given that AC = BD. In the question, it is given that AB bisects $\angle A$ which means AB divides $\angle A$ into two equal parts i.e. $\angle CAB=\angle DAB$. To prove that two triangles are congruent, it is necessary that three conditions should be satisfied.
So, for $\Delta ABC$ and $\Delta ABD$,
$\Rightarrow $AB = AB (common side in both the triangles)
$\Rightarrow $ AC = AD (given)
$\Rightarrow \angle CAB=\angle DAB$ (AB bisects $\angle A$)
By SAS rule,
$\therefore \Delta ABC\cong \Delta ABD$
BC and BD are the sides of the congruent triangles.
$\therefore $BC = BD [ By Corresponding Parts of Congruent Triangles ]
Note: Students should note that while applying the conditions, the reasons for the condition should be written along with them in brackets. Then only marks will be given. Before applying the rule, first check all the necessary conditions satisfying that rule.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE