In the Arrhenius $K = A{\exp ^{( - {E_a}/RT)}}$. A may be termed as rate constant at infinite temperature. If true enter 1, if false enter 0.
Answer
Verified
472.8k+ views
Hint: In the Arrhenius equation, $K = A{\exp ^{( - {E_a}/RT)}}$, you must know each term like A is the Arrhenius constant, K is known as the rate constant, ${E_a}$ is the activation energy, R is the gas constant, T is the temperature in Kelvin. Put the value of temperature infinity, and then solve the Arrhenius equation.
Complete step by step solution:
In 1899, Swedish chemist combined the concepts of activation energy and the Boltzmann distribution law into one of the most common important relationships which are known as the Arrhenius equation:
$K = A{\exp ^{( - {E_a}/RT)}}$
Here, in the Arrhenius equation, each term has its specific meaning.
A is known as the Arrhenius constant or pre-exponential factor.
K is the rate constant of the reaction.
${E_a}$ is the activation energy required for a reaction.
R is the gas constant and T represents the temperature in Kelvin.
Now, let us put the value of temperature equals to infinity in the Arrhenius equation. The equation will be then as follows:
\[K = A{\exp ^{( - {E_a}/R(\infty ))}} = A{\exp ^{( - {E_a}/\infty )}} = A{\exp ^{(0)}}\]
When temperature is infinite, the value of the term ($ {- {E_a}/RT}$) becomes zero.
And, \[\exp ^{0} = 1\]
Thus,
\[K = A{\exp ^{(0)}} = A\]
Hence, the value of the Arrhenius constant (A) becomes equal to the rate constant. Thus, we can say A may be termed as the rate constant at infinite temperature.
Hence, the given statement in the question is true.
Note: Arrhenius equation can also be written in a non-exponential form and this form is more convenient to use and interpret. Taking the natural log on both sides and separating the exponential and Arrhenius factor, the Arrhenius equation is:
$K = A{\exp ^{( - {E_a}/RT)}}$
$\begin{align}
& \ln K = \ln (A{\exp ^{( - {E_a}/RT)}}) \\
& \ln K = \ln A + \ln {\exp ^{( - {E_a}/RT)}} \\
& \ln K = \ln A + \dfrac{{ - {E_a}}}{{RT}} \\
& \ln K = \ln A - \dfrac{{{E_a}}}{{RT}} \\
\end{align} $
Complete step by step solution:
In 1899, Swedish chemist combined the concepts of activation energy and the Boltzmann distribution law into one of the most common important relationships which are known as the Arrhenius equation:
$K = A{\exp ^{( - {E_a}/RT)}}$
Here, in the Arrhenius equation, each term has its specific meaning.
A is known as the Arrhenius constant or pre-exponential factor.
K is the rate constant of the reaction.
${E_a}$ is the activation energy required for a reaction.
R is the gas constant and T represents the temperature in Kelvin.
Now, let us put the value of temperature equals to infinity in the Arrhenius equation. The equation will be then as follows:
\[K = A{\exp ^{( - {E_a}/R(\infty ))}} = A{\exp ^{( - {E_a}/\infty )}} = A{\exp ^{(0)}}\]
When temperature is infinite, the value of the term ($ {- {E_a}/RT}$) becomes zero.
And, \[\exp ^{0} = 1\]
Thus,
\[K = A{\exp ^{(0)}} = A\]
Hence, the value of the Arrhenius constant (A) becomes equal to the rate constant. Thus, we can say A may be termed as the rate constant at infinite temperature.
Hence, the given statement in the question is true.
Note: Arrhenius equation can also be written in a non-exponential form and this form is more convenient to use and interpret. Taking the natural log on both sides and separating the exponential and Arrhenius factor, the Arrhenius equation is:
$K = A{\exp ^{( - {E_a}/RT)}}$
$\begin{align}
& \ln K = \ln (A{\exp ^{( - {E_a}/RT)}}) \\
& \ln K = \ln A + \ln {\exp ^{( - {E_a}/RT)}} \\
& \ln K = \ln A + \dfrac{{ - {E_a}}}{{RT}} \\
& \ln K = \ln A - \dfrac{{{E_a}}}{{RT}} \\
\end{align} $
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE