Answer
Verified
459.3k+ views
Hint: In the Arrhenius equation, $K = A{\exp ^{( - {E_a}/RT)}}$, you must know each term like A is the Arrhenius constant, K is known as the rate constant, ${E_a}$ is the activation energy, R is the gas constant, T is the temperature in Kelvin. Put the value of temperature infinity, and then solve the Arrhenius equation.
Complete step by step solution:
In 1899, Swedish chemist combined the concepts of activation energy and the Boltzmann distribution law into one of the most common important relationships which are known as the Arrhenius equation:
$K = A{\exp ^{( - {E_a}/RT)}}$
Here, in the Arrhenius equation, each term has its specific meaning.
A is known as the Arrhenius constant or pre-exponential factor.
K is the rate constant of the reaction.
${E_a}$ is the activation energy required for a reaction.
R is the gas constant and T represents the temperature in Kelvin.
Now, let us put the value of temperature equals to infinity in the Arrhenius equation. The equation will be then as follows:
\[K = A{\exp ^{( - {E_a}/R(\infty ))}} = A{\exp ^{( - {E_a}/\infty )}} = A{\exp ^{(0)}}\]
When temperature is infinite, the value of the term ($ {- {E_a}/RT}$) becomes zero.
And, \[\exp ^{0} = 1\]
Thus,
\[K = A{\exp ^{(0)}} = A\]
Hence, the value of the Arrhenius constant (A) becomes equal to the rate constant. Thus, we can say A may be termed as the rate constant at infinite temperature.
Hence, the given statement in the question is true.
Note: Arrhenius equation can also be written in a non-exponential form and this form is more convenient to use and interpret. Taking the natural log on both sides and separating the exponential and Arrhenius factor, the Arrhenius equation is:
$K = A{\exp ^{( - {E_a}/RT)}}$
$\begin{align}
& \ln K = \ln (A{\exp ^{( - {E_a}/RT)}}) \\
& \ln K = \ln A + \ln {\exp ^{( - {E_a}/RT)}} \\
& \ln K = \ln A + \dfrac{{ - {E_a}}}{{RT}} \\
& \ln K = \ln A - \dfrac{{{E_a}}}{{RT}} \\
\end{align} $
Complete step by step solution:
In 1899, Swedish chemist combined the concepts of activation energy and the Boltzmann distribution law into one of the most common important relationships which are known as the Arrhenius equation:
$K = A{\exp ^{( - {E_a}/RT)}}$
Here, in the Arrhenius equation, each term has its specific meaning.
A is known as the Arrhenius constant or pre-exponential factor.
K is the rate constant of the reaction.
${E_a}$ is the activation energy required for a reaction.
R is the gas constant and T represents the temperature in Kelvin.
Now, let us put the value of temperature equals to infinity in the Arrhenius equation. The equation will be then as follows:
\[K = A{\exp ^{( - {E_a}/R(\infty ))}} = A{\exp ^{( - {E_a}/\infty )}} = A{\exp ^{(0)}}\]
When temperature is infinite, the value of the term ($ {- {E_a}/RT}$) becomes zero.
And, \[\exp ^{0} = 1\]
Thus,
\[K = A{\exp ^{(0)}} = A\]
Hence, the value of the Arrhenius constant (A) becomes equal to the rate constant. Thus, we can say A may be termed as the rate constant at infinite temperature.
Hence, the given statement in the question is true.
Note: Arrhenius equation can also be written in a non-exponential form and this form is more convenient to use and interpret. Taking the natural log on both sides and separating the exponential and Arrhenius factor, the Arrhenius equation is:
$K = A{\exp ^{( - {E_a}/RT)}}$
$\begin{align}
& \ln K = \ln (A{\exp ^{( - {E_a}/RT)}}) \\
& \ln K = \ln A + \ln {\exp ^{( - {E_a}/RT)}} \\
& \ln K = \ln A + \dfrac{{ - {E_a}}}{{RT}} \\
& \ln K = \ln A - \dfrac{{{E_a}}}{{RT}} \\
\end{align} $
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers