Answer
Verified
468.6k+ views
Hint: In the above problem, we have to find the correct truth table of $p\wedge \left( \sim q \right)$ from the given options. Now, we are going to show the meaning of the symbols given in this expression $p\wedge \left( \sim q \right)$. $''\wedge ''$ means multiplication and $\sim q$ means opposite of the given value of q like if q is true then $\sim q$ is false. The concept that we are going to use in the multiplication table is that the result of the multiplication of a true statement with a true statement is true and the result of the multiplication of a false statement with a false statement is false. The result of the multiplication of a true statement with a false statement is a false statement.
We are asked to find the truth table for $p\wedge \left( \sim q \right)$.
The symbol $''\wedge ''$ means multiplication and $\sim q$ means opposite of the given value of q like if q is true then $\sim q$ is false.
The way of multiplication of p and q is done as follows:
The result of the multiplication of a true statement with a true statement is true.
The result of the multiplication of a false statement with a false statement is false.
The result of the multiplication of a true statement with a false statement is false.
Now, let us symbolize true as “T” and false as “F” and constructing the truth table of $p\wedge \left( \sim q \right)$ we get,
The explanation of the above table is that:
In the first row, the multiplication of the true statement of p with the false statement of $\sim q$ is false.
You might think that q is given as true then why we have multiplied false because we have to multiply $\sim q$ not q and $\sim q$ is the opposite of q. Like if q is true then $\sim q$ is false.
Similarly, you can explain the truth values of the remaining rows.
Hence, the correct option is (b).
Note: The place where the mistake could happen in this problem is that you forgot to consider $\sim $ in $\sim q$ and just use the truth value of q, not $\sim q$. For e.g., in the below, we have shown the correct truth table.
Now, take the second row of this table, if you forgot to consider $\sim q$ then the truth value of q is false, and multiplying false with the true statement of p we get a false statement and which is not the correct value so this is the place where the tendency of making mistakes is pretty high so make sure you won’t make this mistake.
We are asked to find the truth table for $p\wedge \left( \sim q \right)$.
The symbol $''\wedge ''$ means multiplication and $\sim q$ means opposite of the given value of q like if q is true then $\sim q$ is false.
The way of multiplication of p and q is done as follows:
The result of the multiplication of a true statement with a true statement is true.
The result of the multiplication of a false statement with a false statement is false.
The result of the multiplication of a true statement with a false statement is false.
Now, let us symbolize true as “T” and false as “F” and constructing the truth table of $p\wedge \left( \sim q \right)$ we get,
p | q | $p\wedge \left( \sim q \right)$ |
T | T | F |
T | F | T |
F | T | F |
F | F | F |
The explanation of the above table is that:
In the first row, the multiplication of the true statement of p with the false statement of $\sim q$ is false.
You might think that q is given as true then why we have multiplied false because we have to multiply $\sim q$ not q and $\sim q$ is the opposite of q. Like if q is true then $\sim q$ is false.
Similarly, you can explain the truth values of the remaining rows.
Hence, the correct option is (b).
Note: The place where the mistake could happen in this problem is that you forgot to consider $\sim $ in $\sim q$ and just use the truth value of q, not $\sim q$. For e.g., in the below, we have shown the correct truth table.
p | q | $p\wedge \left( \sim q \right)$ |
T | T | F |
T | F | T |
F | T | F |
F | F | F |
Now, take the second row of this table, if you forgot to consider $\sim q$ then the truth value of q is false, and multiplying false with the true statement of p we get a false statement and which is not the correct value so this is the place where the tendency of making mistakes is pretty high so make sure you won’t make this mistake.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers