Answer
Verified
398.1k+ views
Hint: For finding the required ratio, we need to use the formula of binomial expression for ${{\left( a-b \right)}^{n}}$. After expansion of the binomial formula, we will choose ${{5}^{th}}$ and ${{6}^{th}}$ terms. Then, we will use the given condition in the question and it will provide us an equation. So, we will simplify that equation to get the required ratio.
Complete step-by-step solution:
Since, the binomial expression ${{\left( a-b \right)}^{n}}$ is given in the question. So, the expansion of binomial expression for up to 6 terms:
\[\Rightarrow {{\left( a-b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{(-b)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{(-b)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{(-b)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{(-b)}^{3}}+{}^{n}{{C}_{4}}{{a}^{n-4}}{{(-b)}^{4}}+{}^{n}{{C}_{5}}{{a}^{n-5}}{{(-b)}^{5}}\]
Now, we will take ${{5}^{th}}$ and ${{6}^{th}}$ terms as:
$\Rightarrow {{5}^{th}}\text{term}={}^{n}{{C}_{4}}{{a}^{n-4}}{{(-b)}^{4}}$
$\Rightarrow {{6}^{th}}\text{term}={}^{n}{{C}_{5}}{{a}^{n-5}}{{(-b)}^{5}}$
Here, we will use the given condition in the question that the sum of ${{5}^{th}}$ and ${{6}^{th}}$ terms is zero as:
$\Rightarrow {}^{n}{{C}_{4}}{{a}^{n-4}}{{(-b)}^{4}}+{}^{n}{{C}_{5}}{{a}^{n-5}}{{(-b)}^{5}}=0$
Now, we will expand the every term of above step to make calculation easy as:
$\Rightarrow \dfrac{n!}{4!\centerdot \left( n-4 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{4}}}\centerdot {{b}^{4}}-\dfrac{n!}{5!\centerdot \left( n-5 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{5}}}\centerdot {{b}^{5}}=0$
Here, we can write the above term as:
$\Rightarrow \dfrac{n!}{4!\centerdot \left( n-4 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{4}}}\centerdot {{b}^{4}}=\dfrac{n!}{5!\centerdot \left( n-5 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{5}}}\centerdot {{b}^{5}}$
In the above step, we can cancel out the equal like terms as:
$\Rightarrow \dfrac{1}{4!\centerdot \left( n-4 \right)!}\centerdot \dfrac{1}{{{a}^{4}}}\centerdot {{b}^{4}}=\dfrac{1}{5!\centerdot \left( n-5 \right)!}\centerdot \dfrac{1}{{{a}^{5}}}\centerdot {{b}^{5}}$
Again we will write the above step in the simple form to make calculation easy as:
$\Rightarrow \dfrac{1}{4!\centerdot \left( n-4 \right)\centerdot \left( n-5 \right)!}\centerdot \dfrac{1}{{{a}^{4}}}\centerdot {{b}^{4}}=\dfrac{1}{5\centerdot 4!\centerdot \left( n-5 \right)!}\centerdot \dfrac{1}{a\centerdot {{a}^{4}}}\centerdot b\centerdot {{b}^{4}}$
Here, we will again cancel out the equal terms as:
\[\Rightarrow \dfrac{1}{\left( n-4 \right)}=\dfrac{1}{5}\centerdot \dfrac{b}{a}\]
We can write the above term as:
\[\Rightarrow \dfrac{5}{\left( n-4 \right)}=\dfrac{b}{a}\]
The above step can be written as:
\[\Rightarrow \dfrac{a}{b}=\dfrac{\left( n-4 \right)}{5}\]
Hence, In the binomial expression of ${{\left( a-b \right)}^{n}},n>5$, the sum of ${{5}^{th}}$ and ${{6}^{th}}$ terms is zero, then $\dfrac{a}{b}$ equals to \[\dfrac{\left( n-4 \right)}{5}\].
Note: In a binomial experiment, there are \[\text{n}\] independent trials and each trial has only two possible outcomes. One is success and another one is failure. If the probability of success is the same for each trial, this probability is denoted by \[\text{p}\] and the probability of failure is \[\left( \text{1}-\text{p} \right)\].
For a binomial experiment, the probability of exactly $r$ successes in \[\text{n}\] trials is \[\text{P}\left( \text{k successes} \right)\text{ }=\text{ }{}^{n}{{\text{C}}_{r}}\text{ }{{\text{p}}^{r}}{{\left( \text{1 }-\text{ p} \right)}^{n-r}}\]
Complete step-by-step solution:
Since, the binomial expression ${{\left( a-b \right)}^{n}}$ is given in the question. So, the expansion of binomial expression for up to 6 terms:
\[\Rightarrow {{\left( a-b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{(-b)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{(-b)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{(-b)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{(-b)}^{3}}+{}^{n}{{C}_{4}}{{a}^{n-4}}{{(-b)}^{4}}+{}^{n}{{C}_{5}}{{a}^{n-5}}{{(-b)}^{5}}\]
Now, we will take ${{5}^{th}}$ and ${{6}^{th}}$ terms as:
$\Rightarrow {{5}^{th}}\text{term}={}^{n}{{C}_{4}}{{a}^{n-4}}{{(-b)}^{4}}$
$\Rightarrow {{6}^{th}}\text{term}={}^{n}{{C}_{5}}{{a}^{n-5}}{{(-b)}^{5}}$
Here, we will use the given condition in the question that the sum of ${{5}^{th}}$ and ${{6}^{th}}$ terms is zero as:
$\Rightarrow {}^{n}{{C}_{4}}{{a}^{n-4}}{{(-b)}^{4}}+{}^{n}{{C}_{5}}{{a}^{n-5}}{{(-b)}^{5}}=0$
Now, we will expand the every term of above step to make calculation easy as:
$\Rightarrow \dfrac{n!}{4!\centerdot \left( n-4 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{4}}}\centerdot {{b}^{4}}-\dfrac{n!}{5!\centerdot \left( n-5 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{5}}}\centerdot {{b}^{5}}=0$
Here, we can write the above term as:
$\Rightarrow \dfrac{n!}{4!\centerdot \left( n-4 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{4}}}\centerdot {{b}^{4}}=\dfrac{n!}{5!\centerdot \left( n-5 \right)!}\centerdot \dfrac{{{a}^{n}}}{{{a}^{5}}}\centerdot {{b}^{5}}$
In the above step, we can cancel out the equal like terms as:
$\Rightarrow \dfrac{1}{4!\centerdot \left( n-4 \right)!}\centerdot \dfrac{1}{{{a}^{4}}}\centerdot {{b}^{4}}=\dfrac{1}{5!\centerdot \left( n-5 \right)!}\centerdot \dfrac{1}{{{a}^{5}}}\centerdot {{b}^{5}}$
Again we will write the above step in the simple form to make calculation easy as:
$\Rightarrow \dfrac{1}{4!\centerdot \left( n-4 \right)\centerdot \left( n-5 \right)!}\centerdot \dfrac{1}{{{a}^{4}}}\centerdot {{b}^{4}}=\dfrac{1}{5\centerdot 4!\centerdot \left( n-5 \right)!}\centerdot \dfrac{1}{a\centerdot {{a}^{4}}}\centerdot b\centerdot {{b}^{4}}$
Here, we will again cancel out the equal terms as:
\[\Rightarrow \dfrac{1}{\left( n-4 \right)}=\dfrac{1}{5}\centerdot \dfrac{b}{a}\]
We can write the above term as:
\[\Rightarrow \dfrac{5}{\left( n-4 \right)}=\dfrac{b}{a}\]
The above step can be written as:
\[\Rightarrow \dfrac{a}{b}=\dfrac{\left( n-4 \right)}{5}\]
Hence, In the binomial expression of ${{\left( a-b \right)}^{n}},n>5$, the sum of ${{5}^{th}}$ and ${{6}^{th}}$ terms is zero, then $\dfrac{a}{b}$ equals to \[\dfrac{\left( n-4 \right)}{5}\].
Note: In a binomial experiment, there are \[\text{n}\] independent trials and each trial has only two possible outcomes. One is success and another one is failure. If the probability of success is the same for each trial, this probability is denoted by \[\text{p}\] and the probability of failure is \[\left( \text{1}-\text{p} \right)\].
For a binomial experiment, the probability of exactly $r$ successes in \[\text{n}\] trials is \[\text{P}\left( \text{k successes} \right)\text{ }=\text{ }{}^{n}{{\text{C}}_{r}}\text{ }{{\text{p}}^{r}}{{\left( \text{1 }-\text{ p} \right)}^{n-r}}\]
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE