
In the Bohr model of the hydrogen atom, let \[R\] , \[v\] and \[E\] represent the radius of the orbit, speed of the electron and the total energy of the electron respectively. Which of the following quantities are proportional to the quantum number \[n\] ?
A. \[vR\]
B. \[RE \\ \]
C. $\dfrac{v}{E} \\ $
D. $\dfrac{R}{E}$
Answer
141.9k+ views
Hint: To answer this question, we find the proportionality of the principal quantum number \[n\] with radius of orbit, speed of electron and the total energy of electron. After that we will check each option given in the question to find which quantity is proportional to the principal quantum number \[n\] .
Formula Used:
Radius of orbit,
$R = \left( {\dfrac{{{h^2}{ \in _o}}}{{\pi m{e^2}}}} \right){n^2}$
Speed of electron,
$v = \left( {\dfrac{{{e^2}}}{{2{ \in _o}h}}} \right)\dfrac{1}{n}$
Energy of electron,
$E = - \left( {\dfrac{{m{e^4}}}{{8{ \in _o}{h^2}}}} \right)\dfrac{1}{{{n^2}}}$
Where $h$ is Planck’s constant, ${ \in _o}$ is permittivity of free space, $e$ is the charge on a fundamental electron, $m$ is the magnetic quantum number and $n$ is the principal quantum number.
Complete step by step solution:
The electrons in the Bohr model of the atom circle the nucleus in well-defined circular orbits. The quantum number n is used to identify the orbits by an integer. By releasing or absorbing energy, electrons can move from one orbit to another.
We know that, $R = \left( {\dfrac{{{h^2}{ \in _o}}}{{\pi m{e^2}}}} \right){n^2}$ which implies that, $R \propto {n^2}$ ...(1)
(Since all other quantities are constant)
Similarly, $v = \left( {\dfrac{{{e^2}}}{{2{ \in _o}h}}} \right)\dfrac{1}{n}$ which implies that $v \propto \dfrac{1}{n}$ ...(2)
And $E = - \left( {\dfrac{{m{e^4}}}{{8{ \in _o}{h^2}}}} \right)\dfrac{1}{{{n^2}}}$ which implies that $E \propto \dfrac{1}{{{n^2}}}$ ...(3)
Now, we will check each option given in the question one-by-one using equation (1), (2) and (3).
From option A.,
we have $vR = \dfrac{1}{n} \times {n^2} = n$ which is proportional to $n$ . ...(4)
From option B.,
we have $RE = {n^2} \times \dfrac{1}{{{n^2}}}$ which is a constant and thus not proportional to $n$ .
From option C.,
$\dfrac{v}{E} = \dfrac{{\dfrac{1}{n}}}{{\dfrac{1}{{{n^2}}}}}$ which gives, $\dfrac{v}{E} = n$ which is proportional to $n$.
From option D.,
$\dfrac{R}{E} = \dfrac{{{n^2}}}{{\dfrac{1}{{{n^2}}}}}$ which gives, $\dfrac{R}{E} = {n^4}$ which is not proportional to $n$ . ...(5)
Thus, we see that \[vR\] and $\dfrac{v}{E}$ are proportional to $n$ .
Hence, option A and C are answers.
Note: The electrons revolve around the nucleus in circular orbits. The radius around the orbit has some special values of radius. In these stationary orbits they do not radiate energy as expected from Maxwell’s laws. Energy of each stationary orbits are fixed, electrons can jump from a higher orbit to lower orbit by emitting a photon of radiation
Formula Used:
Radius of orbit,
$R = \left( {\dfrac{{{h^2}{ \in _o}}}{{\pi m{e^2}}}} \right){n^2}$
Speed of electron,
$v = \left( {\dfrac{{{e^2}}}{{2{ \in _o}h}}} \right)\dfrac{1}{n}$
Energy of electron,
$E = - \left( {\dfrac{{m{e^4}}}{{8{ \in _o}{h^2}}}} \right)\dfrac{1}{{{n^2}}}$
Where $h$ is Planck’s constant, ${ \in _o}$ is permittivity of free space, $e$ is the charge on a fundamental electron, $m$ is the magnetic quantum number and $n$ is the principal quantum number.
Complete step by step solution:
The electrons in the Bohr model of the atom circle the nucleus in well-defined circular orbits. The quantum number n is used to identify the orbits by an integer. By releasing or absorbing energy, electrons can move from one orbit to another.
We know that, $R = \left( {\dfrac{{{h^2}{ \in _o}}}{{\pi m{e^2}}}} \right){n^2}$ which implies that, $R \propto {n^2}$ ...(1)
(Since all other quantities are constant)
Similarly, $v = \left( {\dfrac{{{e^2}}}{{2{ \in _o}h}}} \right)\dfrac{1}{n}$ which implies that $v \propto \dfrac{1}{n}$ ...(2)
And $E = - \left( {\dfrac{{m{e^4}}}{{8{ \in _o}{h^2}}}} \right)\dfrac{1}{{{n^2}}}$ which implies that $E \propto \dfrac{1}{{{n^2}}}$ ...(3)
Now, we will check each option given in the question one-by-one using equation (1), (2) and (3).
From option A.,
we have $vR = \dfrac{1}{n} \times {n^2} = n$ which is proportional to $n$ . ...(4)
From option B.,
we have $RE = {n^2} \times \dfrac{1}{{{n^2}}}$ which is a constant and thus not proportional to $n$ .
From option C.,
$\dfrac{v}{E} = \dfrac{{\dfrac{1}{n}}}{{\dfrac{1}{{{n^2}}}}}$ which gives, $\dfrac{v}{E} = n$ which is proportional to $n$.
From option D.,
$\dfrac{R}{E} = \dfrac{{{n^2}}}{{\dfrac{1}{{{n^2}}}}}$ which gives, $\dfrac{R}{E} = {n^4}$ which is not proportional to $n$ . ...(5)
Thus, we see that \[vR\] and $\dfrac{v}{E}$ are proportional to $n$ .
Hence, option A and C are answers.
Note: The electrons revolve around the nucleus in circular orbits. The radius around the orbit has some special values of radius. In these stationary orbits they do not radiate energy as expected from Maxwell’s laws. Energy of each stationary orbits are fixed, electrons can jump from a higher orbit to lower orbit by emitting a photon of radiation
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
