
In the diagram A,B,C,D are four pendulums suspended from the same elastic string PQ. The length of A and C are equal to each other while the length of pendulum B is smaller than that of D. Pendulum A is set into a mode of vibrations.
(i) Name the type of vibrations taking place in pendulums B and D?
(ii) What is the state of pendulum C?
(iii) State the reason for the type of vibrations in pendulums B and C.

Answer
127.5k+ views
Hint: When a body executes vibrations under the action of an external periodic force, then the vibrations are called forced vibrations. The length of pendulum C is the same as that of A. Thus both remain in the same phase.
Complete step by step solution:
It has been given that, A,B,C,D are four pendulums suspended from the same elastic string PQ. The length of A and C are equal to each other while the length of pendulum B is smaller than that of D. Pendulum A is set into a mode of vibrations.
The vibrations that occur in the pendulums B and D are called forced vibrations. When a body oscillates by being influenced by an external periodic force, it is called forced oscillation. Here, the amplitude of oscillation experiences damping but remains constant due to the external energy supplied to the system.
Four pendulums A, B, C and D are suspended vertically from the horizontal support PQ. Lengths of A and C are equal and hence their individual frequency of oscillations are equal. Pendulum A is now displaced to one side and hence set into motion. After some time, pendulum C starts vibrating and soon gains some amplitude. After some time, all energy of A is transferred to C and vibration amplitude of C becomes maximum while that of A is minimum. The exchange of energy takes place continuously. Other pendulums also oscillate with a smaller magnitude.
The pendulum C has its length the same as that of A therefore its natural time period is also the same that of A and both remain in the same phase; so resonance takes place. But the length of B is less than the length of A.
Hence B would vibrate with smaller amplitude.
Note: There are three main types of Simple Harmonic Motion- Damped Oscillation, Forced Oscillation and Free Oscillation.
The free oscillation possesses constant amplitude and period without any external force to set the oscillation. Ideally, free oscillation does not undergo damping. But in all-natural systems damping is observed unless and until any constant external force is supplied to overcome damping. In such a system, the amplitude, frequency, and energy all remain constant.
The damping is a resistance offered to the oscillation. The oscillation that fades with time is called damped oscillation. Due to damping, the amplitude of oscillation reduces with time. Reduction in amplitude is a result of energy loss from the system in overcoming external forces like friction or air resistance and other resistive forces. Thus, with the decrease in amplitude, the energy of the system also keeps decreasing.
Complete step by step solution:
It has been given that, A,B,C,D are four pendulums suspended from the same elastic string PQ. The length of A and C are equal to each other while the length of pendulum B is smaller than that of D. Pendulum A is set into a mode of vibrations.
The vibrations that occur in the pendulums B and D are called forced vibrations. When a body oscillates by being influenced by an external periodic force, it is called forced oscillation. Here, the amplitude of oscillation experiences damping but remains constant due to the external energy supplied to the system.
Four pendulums A, B, C and D are suspended vertically from the horizontal support PQ. Lengths of A and C are equal and hence their individual frequency of oscillations are equal. Pendulum A is now displaced to one side and hence set into motion. After some time, pendulum C starts vibrating and soon gains some amplitude. After some time, all energy of A is transferred to C and vibration amplitude of C becomes maximum while that of A is minimum. The exchange of energy takes place continuously. Other pendulums also oscillate with a smaller magnitude.
The pendulum C has its length the same as that of A therefore its natural time period is also the same that of A and both remain in the same phase; so resonance takes place. But the length of B is less than the length of A.
Hence B would vibrate with smaller amplitude.
Note: There are three main types of Simple Harmonic Motion- Damped Oscillation, Forced Oscillation and Free Oscillation.
The free oscillation possesses constant amplitude and period without any external force to set the oscillation. Ideally, free oscillation does not undergo damping. But in all-natural systems damping is observed unless and until any constant external force is supplied to overcome damping. In such a system, the amplitude, frequency, and energy all remain constant.
The damping is a resistance offered to the oscillation. The oscillation that fades with time is called damped oscillation. Due to damping, the amplitude of oscillation reduces with time. Reduction in amplitude is a result of energy loss from the system in overcoming external forces like friction or air resistance and other resistive forces. Thus, with the decrease in amplitude, the energy of the system also keeps decreasing.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
