
In the figure given below find the area of the shaded region where a circular arc of radius 6 cm has been drawn with vertex O of an equilateral triangle OAB of side 12 cm as center.
Answer
622.8k+ views
Hint: - Area of shaded region $ = $Area of circle$ + $Area of equilateral triangle$ - $area of
common region.
Given data:
Radius of circle$\left( r \right) = 6m$
Side of an equilateral triangle$\left( a \right) = 12cm$
As we know area of circle$ = \pi {r^2} = \dfrac{{22}}{7} \times {6^2} = \dfrac{{792}}{7}c{m^2}$
Now as we know area of equilateral triangle$ = \dfrac{{\sqrt 3 }}{4}{a^2} = \dfrac{{\sqrt 3 }}{4} \times
{12^2} = 36\sqrt 3 c{m^2}$
Area of common region (i.e. between circle and equilateral triangle)
$ \Rightarrow \left( {\dfrac{\theta }{{{{360}^0}}}} \right)\pi {r^2}$
As we know in equilateral triangles all angles equal to${60^0}$.
\[ \Rightarrow \angle {\text{AOB}} = {60^0} = \theta \]
Therefore area of common region$ = \left( {\dfrac{\theta }{{{{360}^0}}}} \right)\pi {r^2} =
\dfrac{{{{60}^0}}}{{{{360}^0}}} \times \dfrac{{22}}{7} \times {6^2} = \dfrac{{132}}{7}c{m^2}$
Therefore, the area of the shaded region$\left( A \right)$$ = $Area of circle$ + $Area of equilateral
triangle$ - $area of the common region.
$ \Rightarrow \left( A \right) = \dfrac{{792}}{7} + 36\sqrt 3 - \dfrac{{132}}{7} = \left( {\dfrac{{660}}{7} +
36\sqrt 3 } \right)c{m^2}$
So, this is the required answer.
Note: -In such types of questions always remember the formula of area of standard shapes which is
stated above, then first find out the area of circle then find out the area of triangle then find out the
area of common region, then find out the area of shaded region using the formula which is stated above
then simplify we will get the required answer.
common region.
Given data:
Radius of circle$\left( r \right) = 6m$
Side of an equilateral triangle$\left( a \right) = 12cm$
As we know area of circle$ = \pi {r^2} = \dfrac{{22}}{7} \times {6^2} = \dfrac{{792}}{7}c{m^2}$
Now as we know area of equilateral triangle$ = \dfrac{{\sqrt 3 }}{4}{a^2} = \dfrac{{\sqrt 3 }}{4} \times
{12^2} = 36\sqrt 3 c{m^2}$
Area of common region (i.e. between circle and equilateral triangle)
$ \Rightarrow \left( {\dfrac{\theta }{{{{360}^0}}}} \right)\pi {r^2}$
As we know in equilateral triangles all angles equal to${60^0}$.
\[ \Rightarrow \angle {\text{AOB}} = {60^0} = \theta \]
Therefore area of common region$ = \left( {\dfrac{\theta }{{{{360}^0}}}} \right)\pi {r^2} =
\dfrac{{{{60}^0}}}{{{{360}^0}}} \times \dfrac{{22}}{7} \times {6^2} = \dfrac{{132}}{7}c{m^2}$
Therefore, the area of the shaded region$\left( A \right)$$ = $Area of circle$ + $Area of equilateral
triangle$ - $area of the common region.
$ \Rightarrow \left( A \right) = \dfrac{{792}}{7} + 36\sqrt 3 - \dfrac{{132}}{7} = \left( {\dfrac{{660}}{7} +
36\sqrt 3 } \right)c{m^2}$
So, this is the required answer.
Note: -In such types of questions always remember the formula of area of standard shapes which is
stated above, then first find out the area of circle then find out the area of triangle then find out the
area of common region, then find out the area of shaded region using the formula which is stated above
then simplify we will get the required answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

