
In the following Question, Rs. 33,000 is paid off in 12 instalments, such that each installment is Rs. 100 more than the preceding one. Find the amounts of the first and the last instalments.
Answer
612.9k+ views
Hint: The given question is in A.P., therefore we can consider the value of the number of terms to be 12, common difference to be 100 and then we can use these values to find the sum of n terms using the formula.
Complete step-by-step answer:
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$.
Let, since we do not know the value of the first instalment, let the first instalment be a.
n = 12
d = 100
${S_{12}} = \dfrac{{12}}{2}\left( {2a + 11d} \right)$
$33000 = 6\left( {2a + 1100} \right)$
$2a + 1100 = 5500$
\[2a = 4400\]
\[a = 2200\]
So, the first instalment is Rs. 2200
Last instalment is 2200+11(100) = 2200+1100=3300
Note: In these questions where there is a common difference we can directly apply arithmetic progression formulas to find the answer.
Complete step-by-step answer:
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$.
Let, since we do not know the value of the first instalment, let the first instalment be a.
n = 12
d = 100
${S_{12}} = \dfrac{{12}}{2}\left( {2a + 11d} \right)$
$33000 = 6\left( {2a + 1100} \right)$
$2a + 1100 = 5500$
\[2a = 4400\]
\[a = 2200\]
So, the first instalment is Rs. 2200
Last instalment is 2200+11(100) = 2200+1100=3300
Note: In these questions where there is a common difference we can directly apply arithmetic progression formulas to find the answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

