Answer
Verified
460.5k+ views
Hint-To solve the given problem consider the Junction rule and Loop rule. Usually these two rules or laws are very useful in finding the values of the electrical resistances of a complicated circuit.
Formula used:
$V = IR$
Where, $V$= voltage drop across the circuit, $I$= current flow across the circuit, $R$= resistance of the resistors.
Complete step-by-step solution:
By using the Kirchhoff’s current law,
In the left loop, both \[2\Omega \] resistors are in series combination so the total resistance on the left loop is,
$ \Rightarrow {\text{R = (2 + 2)}}$
By using the addition, we can add these two values, we get,
$ \Rightarrow {\text{4}}\Omega $
In the right loop, both \[2\Omega \] resistors are in series combination so the total resistance on the right loop is, ${\text{R = (2 + 2) = 4}}$
From Kirchhoff’s current law at ${X_X}$,
We get,
$\dfrac{{{\text{x - 10}}}}{4} + \dfrac{{{\text{x - 10}}}}{2} + \dfrac{{{\text{x - 20}}}}{4} + \dfrac{{{\text{x - 10}}}}{2} = 0$
Calculating we get the values of $X$ as:
$\therefore {\text{x = }}\dfrac{{35}}{3}V$
Therefore, the current flows through the circuit is,
$ \Rightarrow {\text{I = }}\dfrac{{20 - \dfrac{{35}}{3}}}{4}$
We can use fraction division to solve the given equation. By making some simplifications we get,
$ \Rightarrow \dfrac{{25}}{{12}}A$
We can divide the given values to get the value of $I$. We get,
$\therefore 2.0833A$
Hence the current flows through the circuit is $2.0833A$
Additional information:
-An electric current is the flow of particles (electrons) through wires and components.
-It is the rate of flow of charge in the circuit.
-If the electric charge flows through a conductor, we can say that there is an electric current in the conductor.
-In the circuits using metallic wires, electrons constitute the flow of charges.
NoteTo solve the given problem first you need to remember the direction of flow of the current. The direction must be either clockwise or anti clockwise. Consider the current is flowing through a resistor, there will definitely be a potential decrease. In such a case the ohm’s law that is $V = IR$ will be negative.
Formula used:
$V = IR$
Where, $V$= voltage drop across the circuit, $I$= current flow across the circuit, $R$= resistance of the resistors.
Complete step-by-step solution:
By using the Kirchhoff’s current law,
In the left loop, both \[2\Omega \] resistors are in series combination so the total resistance on the left loop is,
$ \Rightarrow {\text{R = (2 + 2)}}$
By using the addition, we can add these two values, we get,
$ \Rightarrow {\text{4}}\Omega $
In the right loop, both \[2\Omega \] resistors are in series combination so the total resistance on the right loop is, ${\text{R = (2 + 2) = 4}}$
From Kirchhoff’s current law at ${X_X}$,
We get,
$\dfrac{{{\text{x - 10}}}}{4} + \dfrac{{{\text{x - 10}}}}{2} + \dfrac{{{\text{x - 20}}}}{4} + \dfrac{{{\text{x - 10}}}}{2} = 0$
Calculating we get the values of $X$ as:
$\therefore {\text{x = }}\dfrac{{35}}{3}V$
Therefore, the current flows through the circuit is,
$ \Rightarrow {\text{I = }}\dfrac{{20 - \dfrac{{35}}{3}}}{4}$
We can use fraction division to solve the given equation. By making some simplifications we get,
$ \Rightarrow \dfrac{{25}}{{12}}A$
We can divide the given values to get the value of $I$. We get,
$\therefore 2.0833A$
Hence the current flows through the circuit is $2.0833A$
Additional information:
-An electric current is the flow of particles (electrons) through wires and components.
-It is the rate of flow of charge in the circuit.
-If the electric charge flows through a conductor, we can say that there is an electric current in the conductor.
-In the circuits using metallic wires, electrons constitute the flow of charges.
NoteTo solve the given problem first you need to remember the direction of flow of the current. The direction must be either clockwise or anti clockwise. Consider the current is flowing through a resistor, there will definitely be a potential decrease. In such a case the ohm’s law that is $V = IR$ will be negative.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE