In the given figure, the points A, B, C, D are concyclic, when \[x = {80^ \circ }, z = y - {20^ \circ }\] then \[z = ?\]
A. \[{100^ \circ }\]
B. \[{80^ \circ }\]
C. \[{40^ \circ }\]
D. \[{140^ \circ }\]
Answer
Verified
483.3k+ views
Hint: We use the property of concyclic points that they all lie on the circle and joining these points forms a quadrilateral. Using the property of the sum of opposite interior angles of a quadrilateral we calculate the value of y and substitute in to find the value of z.
Complete step-by-step answer:
We know points \[A,B,C,D\] are concyclic, which means they all lie on the circle.
Now joining the points on the circle we can form a quadrilateral \[ABCD\].
From the property of opposite angles in a quadrilateral we know that the sum of opposite pairs of angles in a quadrilateral is equal to \[{180^ \circ }\].
Now from the diagram we see that pairs of opposite angles are \[\angle ADC,\angle ABC\] and \[\angle BCD,\angle BAD\].
Now we will consider the set of opposite angles \[\angle ADC,\angle ABC\].
So, using the property we can write
\[ \Rightarrow \angle ADC + \angle ABC = {180^ \circ }\]
We know the value of \[\angle ADC = y,\angle ABC = {80^ \circ }\]
\[ \Rightarrow y + {80^ \circ } = {180^ \circ }\]
Shift all constant terms in degree to the right hand side of the equation.
\[
\Rightarrow y = {180^ \circ } - {80^ \circ } \\
\Rightarrow y = {100^ \circ } \\
\]
Therefore the value of \[\angle ADC = {100^ \circ }\]
Now we have to find the value of \[z\] from the equation \[z = y - {20^ \circ }\]
We will substitute the value of \[y = {100^ \circ }\] in the equation.
\[ \Rightarrow z = {100^ \circ } - {20^ \circ } = {80^ \circ }\]
Therefore, value of \[z = {80^ \circ }\]
So, the correct answer is “Option B”.
Note: Students many times make the mistake of writing the final answer as the value of y as in figure there is no mention of z, so they look at the variable and write its value, but keep in mind the question is asking for the value of z. Many students write their final answer without a degree sign, always writing the symbol along with the value.
Complete step-by-step answer:
We know points \[A,B,C,D\] are concyclic, which means they all lie on the circle.
Now joining the points on the circle we can form a quadrilateral \[ABCD\].
From the property of opposite angles in a quadrilateral we know that the sum of opposite pairs of angles in a quadrilateral is equal to \[{180^ \circ }\].
Now from the diagram we see that pairs of opposite angles are \[\angle ADC,\angle ABC\] and \[\angle BCD,\angle BAD\].
Now we will consider the set of opposite angles \[\angle ADC,\angle ABC\].
So, using the property we can write
\[ \Rightarrow \angle ADC + \angle ABC = {180^ \circ }\]
We know the value of \[\angle ADC = y,\angle ABC = {80^ \circ }\]
\[ \Rightarrow y + {80^ \circ } = {180^ \circ }\]
Shift all constant terms in degree to the right hand side of the equation.
\[
\Rightarrow y = {180^ \circ } - {80^ \circ } \\
\Rightarrow y = {100^ \circ } \\
\]
Therefore the value of \[\angle ADC = {100^ \circ }\]
Now we have to find the value of \[z\] from the equation \[z = y - {20^ \circ }\]
We will substitute the value of \[y = {100^ \circ }\] in the equation.
\[ \Rightarrow z = {100^ \circ } - {20^ \circ } = {80^ \circ }\]
Therefore, value of \[z = {80^ \circ }\]
So, the correct answer is “Option B”.
Note: Students many times make the mistake of writing the final answer as the value of y as in figure there is no mention of z, so they look at the variable and write its value, but keep in mind the question is asking for the value of z. Many students write their final answer without a degree sign, always writing the symbol along with the value.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE