Answer
Verified
428.4k+ views
Hint: In the question, we have to calculate the De-Broglie wavelength. Using the Bohr postulates, the relation was determined for the radius of Bohr orbit.
We have, $mvr = \dfrac{{nh}}{{2\pi }}$ ; v represents the velocity of an electron, r represents the radius, h represents Planck’s constant, n represents the principal quantum number of orbit.
Here, the mentioned expression is being used for angular momentum given by De-Broglie.
Further the general formula was determined for radius that can be written as $r = \dfrac{{{n^2}{h^2}}}{{4{\pi ^2}mZK{e^2}}}$
Complete step by step answer:
As we already mentioned the general formula the radius of ${n^{th}}$ Bohr orbit i.e.
$r = \dfrac{{{n^2}{h^2}}}{{4{\pi ^2}mZK{e^2}}}$
n represents the principal quantum number of orbits like n is 0, 1, 2, …
h represents the Planck’s constant
m represents the mass of an electron
K represents the Coulomb’s constant
e represents the charge of an electron
In this expression Z represents the atomic number.
Now, we know that the atomic number of hydrogen is 1.
Therefore, the expression of radius for hydrogen atom will be as follows:
$r = \dfrac{{{n^2}{h^2}}}{{4{\pi ^2}mK{e^2}}}$
So, we can say that according to the Bohr $r\alpha {n^2}$
We are given that x is the radius of Bohr’s first orbit (${r_1}$), thus using the above expression we can write it as follows:
$\dfrac{{{r_1}}}{{{r_3}}} = \dfrac{{{n_1}^2}}{{{n_3}^2}}$ Here ${r_3}$ represents the radius of $3rd$ orbit.
$ \Rightarrow \dfrac{{{r_1}}}{{{r_3}}} = \dfrac{{{1^2}}}{{{3^2}}}$
$ \Rightarrow {r_3} = 9{r_1}$ (Solving it in terms of ${r_1}$)
Here we know ${r_1}$ is x.
So, ${r_3} = 9x$
Now, if we see the expression given by De-Broglie for angular momentum i.e.
$mvr = \dfrac{{nh}}{{2\pi }}$
If the electron is in $3rd$ orbit then $mv{r_3} = \dfrac{{3h}}{{2\pi }}$
$ \Rightarrow \dfrac{h}{{mv}} = \dfrac{{2\pi {r_3}}}{3}$
We know that De-Broglie have given the expression for wavelength which can be written as:
$\lambda = \dfrac{h}{{mv}}$ ; $\lambda $ is the De-Broglie wavelength
Thus, $\lambda = \dfrac{{2\pi {r_3}}}{3}$
After substituting the value of ${r_3}$ in the above expression, we get
$\lambda = \dfrac{{2\pi 9x}}{3}$
$ \Rightarrow \lambda = 6\pi x$
In the last, we can conclude that the wavelength for electron in $3rd$ orbit is $6\pi x$
So, the correct answer is Option B.
Note: We have come across the term ‘angular momentum of electron’. The concept of angular momentum is given by De-Broglie. The electron revolving around the nucleus shows both wave and particle character. The circumference of the orbit is considered to be an integral multiple of the wavelength of the electron whose wave is existing in the phase.
We have, $mvr = \dfrac{{nh}}{{2\pi }}$ ; v represents the velocity of an electron, r represents the radius, h represents Planck’s constant, n represents the principal quantum number of orbit.
Here, the mentioned expression is being used for angular momentum given by De-Broglie.
Further the general formula was determined for radius that can be written as $r = \dfrac{{{n^2}{h^2}}}{{4{\pi ^2}mZK{e^2}}}$
Complete step by step answer:
As we already mentioned the general formula the radius of ${n^{th}}$ Bohr orbit i.e.
$r = \dfrac{{{n^2}{h^2}}}{{4{\pi ^2}mZK{e^2}}}$
n represents the principal quantum number of orbits like n is 0, 1, 2, …
h represents the Planck’s constant
m represents the mass of an electron
K represents the Coulomb’s constant
e represents the charge of an electron
In this expression Z represents the atomic number.
Now, we know that the atomic number of hydrogen is 1.
Therefore, the expression of radius for hydrogen atom will be as follows:
$r = \dfrac{{{n^2}{h^2}}}{{4{\pi ^2}mK{e^2}}}$
So, we can say that according to the Bohr $r\alpha {n^2}$
We are given that x is the radius of Bohr’s first orbit (${r_1}$), thus using the above expression we can write it as follows:
$\dfrac{{{r_1}}}{{{r_3}}} = \dfrac{{{n_1}^2}}{{{n_3}^2}}$ Here ${r_3}$ represents the radius of $3rd$ orbit.
$ \Rightarrow \dfrac{{{r_1}}}{{{r_3}}} = \dfrac{{{1^2}}}{{{3^2}}}$
$ \Rightarrow {r_3} = 9{r_1}$ (Solving it in terms of ${r_1}$)
Here we know ${r_1}$ is x.
So, ${r_3} = 9x$
Now, if we see the expression given by De-Broglie for angular momentum i.e.
$mvr = \dfrac{{nh}}{{2\pi }}$
If the electron is in $3rd$ orbit then $mv{r_3} = \dfrac{{3h}}{{2\pi }}$
$ \Rightarrow \dfrac{h}{{mv}} = \dfrac{{2\pi {r_3}}}{3}$
We know that De-Broglie have given the expression for wavelength which can be written as:
$\lambda = \dfrac{h}{{mv}}$ ; $\lambda $ is the De-Broglie wavelength
Thus, $\lambda = \dfrac{{2\pi {r_3}}}{3}$
After substituting the value of ${r_3}$ in the above expression, we get
$\lambda = \dfrac{{2\pi 9x}}{3}$
$ \Rightarrow \lambda = 6\pi x$
In the last, we can conclude that the wavelength for electron in $3rd$ orbit is $6\pi x$
So, the correct answer is Option B.
Note: We have come across the term ‘angular momentum of electron’. The concept of angular momentum is given by De-Broglie. The electron revolving around the nucleus shows both wave and particle character. The circumference of the orbit is considered to be an integral multiple of the wavelength of the electron whose wave is existing in the phase.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE