Answer
Verified
113.7k+ views
Hint First, in order of question, we should know what is Electrostatic induction. Then to know what's the role of charges during the process of electrostatic induction. In the nuclei of an object, what type of role is played by both negative and positive charges.
Complete Step by step solution
Electrostatic induction is a redistribution of electrical charge in an object, brought about by the impact of close by charges. Within the presence of a charged body, an insulated conductor makes a positive charge toward one end and a negative charge on the opposite end.
At the point when a charged object is brought close to an uncharged, electrically conducting object, for example, A bit of metal, both bodies are closed by charge because Coulomb's law causes a partition of these inside charges. For instance, if a positive charge is brought close to the article, the electrons in the metal will be pulled in toward it and move to the side of the object attracting it. At the point when the electrons move out of a region, they leave an unequal positive charge because of the nuclei. This results in a region of negative charge on the article closest to the outer charge, and a region of positive charge on the part away from it. These are called induced charges. On the off chance that the outer charge is negative, the polarity of the charged areas will be switched.
Since this cycle is only a reallocation of the charges that were at that point in the object, it doesn't change the total charge on the object; it actually has no net charge. This induction impact is reversible; if the close by charge is taken out, the attraction between the positive and negative inner charges cause them to intermix once more.
Hence, the correct option is (C). Negative and positive charges are separated.
Note As the charges in the metal object keep on isolating or separating, the resulting positive and negative regions make their own electric field, which restricts the field of the outside charge. This process proceeds until rapidly (inside a fraction of a second) a balance is reached in which the induced charges are actually the correct size to drop the outer electric field all through the inside of the metal object.
Complete Step by step solution
Electrostatic induction is a redistribution of electrical charge in an object, brought about by the impact of close by charges. Within the presence of a charged body, an insulated conductor makes a positive charge toward one end and a negative charge on the opposite end.
At the point when a charged object is brought close to an uncharged, electrically conducting object, for example, A bit of metal, both bodies are closed by charge because Coulomb's law causes a partition of these inside charges. For instance, if a positive charge is brought close to the article, the electrons in the metal will be pulled in toward it and move to the side of the object attracting it. At the point when the electrons move out of a region, they leave an unequal positive charge because of the nuclei. This results in a region of negative charge on the article closest to the outer charge, and a region of positive charge on the part away from it. These are called induced charges. On the off chance that the outer charge is negative, the polarity of the charged areas will be switched.
Since this cycle is only a reallocation of the charges that were at that point in the object, it doesn't change the total charge on the object; it actually has no net charge. This induction impact is reversible; if the close by charge is taken out, the attraction between the positive and negative inner charges cause them to intermix once more.
Hence, the correct option is (C). Negative and positive charges are separated.
Note As the charges in the metal object keep on isolating or separating, the resulting positive and negative regions make their own electric field, which restricts the field of the outside charge. This process proceeds until rapidly (inside a fraction of a second) a balance is reached in which the induced charges are actually the correct size to drop the outer electric field all through the inside of the metal object.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
JEE Main Login 2045: Step-by-Step Instructions and Details
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking