Answer
Verified
397.2k+ views
Hint: Learn about the different dimensions of the quantities that are given in the expression of the V here. The physical quantities given in the expression are the pressure, radius, coefficient of viscosity and length respectively. The dimension of any physical quantities are written in terms of mass length and time.
Complete step by step answer:
In the given expression the physical quantities given are P that is the pressure, r is the radius \[\eta \] is the coefficient of viscosity l is the length. Now, we know that the dimension of any physical quantities are written in terms of mass, length and time by the form \[[{M^x}{L^y}{T^z}]\] where, \[x,y,z\] are some constant for that particular quantity.
Now, we know that the dimension of pressure is, \[[{M^1}{L^{ - 1}}{T^{ - 2}}]\].
Also the dimension of radius is \[[L]\].
The dimension of coefficient of viscosity is \[[{M^1}{L^{ - 1}}{T^{ - 1}}]\]
And the dimension of length is \[[L]\].
We know that the constants are dimensionless quantities.
Hence, putting this dimensions in the given expression we can find the dimension of V as,
\[[V] = \dfrac{{[{M^1}{L^{ - 1}}{T^{ - 2}}]{{[L]}^4}}}{{[{M^1}{L^{ - 1}}{T^{ - 1}}][L]}}\]
Upon simplifying we will have,
\[[V] = [{M^{1 - 1}}{L^{ - 1 + 4 - 1 + 1}}{T^{ - 2 + 1}}]\]
\[\therefore [V] = [{M^0}{L^3}{T^{ - 1}}]\]
Hence the dimension of the term \[V\] is \[[{M^0}{L^3}{T^{ - 1}}]\].
Hence, option B is the correct answer.
Note: We can also determine the dimension of each quantity from analyzing the unit of the individual quantities. Especially for the coefficient of viscosity. We know that the unit of coefficient of viscosity is nothing but the \[Ns{m^{ - 2}}\]. In the unit newton is the unit of force and force is mass times acceleration like this. We can easily find the dimension of compound physical quantities if we can’t recall the dimension of each quantity.
Complete step by step answer:
In the given expression the physical quantities given are P that is the pressure, r is the radius \[\eta \] is the coefficient of viscosity l is the length. Now, we know that the dimension of any physical quantities are written in terms of mass, length and time by the form \[[{M^x}{L^y}{T^z}]\] where, \[x,y,z\] are some constant for that particular quantity.
Now, we know that the dimension of pressure is, \[[{M^1}{L^{ - 1}}{T^{ - 2}}]\].
Also the dimension of radius is \[[L]\].
The dimension of coefficient of viscosity is \[[{M^1}{L^{ - 1}}{T^{ - 1}}]\]
And the dimension of length is \[[L]\].
We know that the constants are dimensionless quantities.
Hence, putting this dimensions in the given expression we can find the dimension of V as,
\[[V] = \dfrac{{[{M^1}{L^{ - 1}}{T^{ - 2}}]{{[L]}^4}}}{{[{M^1}{L^{ - 1}}{T^{ - 1}}][L]}}\]
Upon simplifying we will have,
\[[V] = [{M^{1 - 1}}{L^{ - 1 + 4 - 1 + 1}}{T^{ - 2 + 1}}]\]
\[\therefore [V] = [{M^0}{L^3}{T^{ - 1}}]\]
Hence the dimension of the term \[V\] is \[[{M^0}{L^3}{T^{ - 1}}]\].
Hence, option B is the correct answer.
Note: We can also determine the dimension of each quantity from analyzing the unit of the individual quantities. Especially for the coefficient of viscosity. We know that the unit of coefficient of viscosity is nothing but the \[Ns{m^{ - 2}}\]. In the unit newton is the unit of force and force is mass times acceleration like this. We can easily find the dimension of compound physical quantities if we can’t recall the dimension of each quantity.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE